GREENHOUSE GAS EMISSIONS INVENTORIES FOR 18 EUROPEAN REGIONS

EUCO280/50 Project Stage 1: Inventory Formation
The Greenhouse Gas Regional Inventory Protocol (GRIP)
With project EUCO\textsubscript{2} 80/50, 18 European metropolitan regions have taken charge as regards climate protection. Their shared aim is to reduce their greenhouse gases emissions by 80 percent by the year 2050.

As fundamental first step, the regions have compiled inventories of their CO\textsubscript{2} emissions, using the GRIP - Greenhouse gas Regional Inventory Protocol data model. It complies with the guidelines of the United Nations Framework Convention on Climate Change UNFCCC and ensures a europewide and worldwide comparability of the inventories.

The results are presented in this brochure in overview and detail. By means of the inventories, we can now determine our positions in the individual regions; identify, based on the respective economical and geographical situation, priority fields of action; and realise in which areas we can learn from the successes of other regions.

The Hamburg Metropolitan Region is coordinating partner of EUCO\textsubscript{2} 80/50. Already in november 2007, we hosted the METREX Conference on Climate Change. The City of Hamburg will be European Green Capital in 2011. This title is, amongst other things, an acknowledgment of our efforts in the fight against climate change, but we are aware in Hamburg that successes can only be achieved in cooperation with the whole region.

Many of our problems in the Hamburg Metropolitan Region are comparable to those in other regions. We too are looking for the best solutions and have by no means found all answers yet. The European cooperation can open up new vistas for us and inspire us in our efforts.

We thank all regions which are our partners in this project for the trust they confided in us. Our thanks also go to the University of Manchester for the devoted scientific monitoring of the CO\textsubscript{2} inventory process and to the many colleagues in the participating regions who have contributed with their work to the project’s success. On the basis of this cooperation, we can confidently approach the great challenges we have set ourselves.

Christian Maaß
State Secretary in the Ministry for Urban Development and Environment of the Free and Hanseatic City of Hamburg
METREX was founded in 1996, at the Glasgow Metropolitan Regions Conference, to foster the exchange of knowledge and understanding between practitioners (politicians, officials and their advisers) on key strategic issues of metropolitan significance and common interest. The Network has now grown to 50 of Europe’s 100+ major urban, or metropolitan, areas. It is highly representative all European urban conditions, circumstances and nationalities. The METREX web site at www.eurometrex.org gives information on the activities of the Network and its current agenda and programme.

At a METREX Meeting in Granada in 2005 the Network first considered the key issue of climate change. The Network took advice from the Tyndall Centre (UK) on the metropolitan dimension to climate change and the scale and significance of urban greenhouse gas (GHG) emissions. The Tyndall Centre brought to the attention of the Network the capacity of the GRIP (Greenhouse Gas Regional Inventory Protocol) model and process, devised and developed by Dr. Sebastian Carney now of Manchester University, to enable metropolitan areas to assess their GHG emissions and explore mitigation scenarios.

Metropolitan dimension of climate change

The population of the EU is some 490 million of which perhaps 60% live in its 100+ major urban, or metropolitan, areas. EU per capita GHG emissions are some 11 tonnes CO₂ equivalent. On this basis EU metropolitan areas could be responsible for some 3234m tonnes of GHG emissions annually or 14% of the global total of 23000m tonnes.

The EU has set a target for an 80% reduction in GHG, over 1990 levels, by 2050. METREX has responded by taking steps to become informed about the most effective way in which Europe’s 100+ metropolitan areas can reduce their emissions to meet this target.

The Stern Report has shown that the level of GHG in the atmosphere has to be stabilised at below 500ppm, from its present (2005) level of 430ppm, if the world is to have the prospect of holding average temperature rise to below 3ºC. This means that effective mitigation action has to be identified, initiated, committed and given momentum in the next 10 years. The forthcoming Copenhagen summit, in December 2009, will be the forum through which co-ordinated international mitigation action can be orchestrated.

The EUČO₂ 80/50 project also aims to identify ways in which, in taking effective mitigation action, Europe’s metropolitan areas can also secure their low carbon energy futures.

InterMETREXplus

An existing EU Interreg IIIIC project on effective metropolitan spatial planning practice, InterMETREX, was extended in 2007, as InterMETREXplus, to include consideration of climate change. InterMETREXplus involved four of the project partners in piloting the application of the GRIP model at the metropolitan level, to produce GHG inventories, and in the case of the project Lead Partner to explore mitigation scenarios. The InterMETREXplus pilot project brochure can be downloaded from the METREX web site.

Metropolitan areas, energy security and competitiveness

It is clear that Europe will have to move quickly to a low carbon economy if it is to remain competitive. Carbon based economies will face more expensive and diminishing fuel supplies. Such supplies may also become less secure. In these circumstances it makes good sense for metropolitan areas to consider their own energy supplies and the extent to which these can become low carbon and more secure in the future.

The EUČO₂ 80/50 project also aims to identify ways in which, in taking effective mitigation action, Europe’s metropolitan areas can also secure their low carbon energy futures.

"The project identifies the key role the spatial planning system has in reducing greenhouse gas emissions. We recognise the importance of this innovative piece of work in providing a solid foundation for starting to develop and
share spatial planning responses with partner organisations in Scotland and the wider European context to address climate change in advance of any statutory requirements emanating from the Climate Change Scotland Bill. The Judges wish GCVSPJC (the Lead Partner) and Partners every success in the future development of the project.

EURO 280/50

“The design of policies and the challenge of implementation is where economists, other social scientists and policy analysts should now be focusing their efforts.” (Blueprint for a safer planet. How to Manage Climate Change and Create a New Era of Progress and Prosperity. Nicolas Stern. 2009).

The EURO 280/50 project is a METREX initiative to enable Europe’s metropolitan areas to assess their GHG emissions, through inventories of the main energy sources and their use, and to explore effective mitigation measures, through scenarios of collective “stakeholder” action.

Eighteen partner metropolitan areas, from twelve EU countries, will take forward the application of the GRIP model and process, piloted through InterMETREX plus. The first stage of this work is summarised in this Report. In the autumn of 2009 it is intended to move to the mitigation scenario and preferred strategy stages. An Application has been made for support from the Interreg IVC programme by the Lead Partner, the Metropolregion Hamburg.

The EURO 280/50 project aims, as its outcome, to produce a Benchmark of Effective Metropolitan Mitigation Practice. This may take the form of a manual and a DVD addressed to the 100+ metropolitan areas of Europe and the 100+ plus metropolitan areas of the USA, which, as it happens, also represent about 60% of the American population. The 200 major metropolitan areas of Europe and America are together responsible for about 30% of global GHG emissions. Effective mitigation practice in these major global urban areas can be progressed through outcomes of the EURO 280/50 project.

This is the ambitious aim of the project in the period from 2009 to 2012.

Metropolitan GHG mitigation

The intention, at the end of the project, is to provide an effective political and technical response to the question that all European metropolitan Presidents, Mayors and Leaders will ask.

“So what should we do?”

The EURO 280/50 project assumes that by 2050 effective mitigation action will have been taken at the international, European, national and metropolitan levels. Some of the measures that are conceivable are set out in the box below. They and other measures appropriate to the varying climatic and urban circumstances across Europe’s metropolitan areas will be explored and assessed as the EURO 280/50 project develops.

![Roger Read, Secretary General](image)

<table>
<thead>
<tr>
<th>Measures for mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>European level</td>
</tr>
<tr>
<td>1. EU renewable energy grid</td>
</tr>
<tr>
<td>2. Low carbon energy supplies (all EU and adjoining renewables)</td>
</tr>
<tr>
<td>3. CCS for coal and gas</td>
</tr>
<tr>
<td>4. Electric cars (and related charging infrastructure)</td>
</tr>
<tr>
<td>5. Hydrogen and fuel cells trucks and buses (and related infrastructure)</td>
</tr>
<tr>
<td>6. High speed train network for short (450km) journeys</td>
</tr>
<tr>
<td>7. Few short haul flights (across seas) with hybrid and bio-fuel power</td>
</tr>
<tr>
<td>National level</td>
</tr>
<tr>
<td>10. Energy efficient appliances (EU standards)</td>
</tr>
<tr>
<td>11. Energy efficiency building management systems (EU standards)</td>
</tr>
<tr>
<td>12. Road pricing (for GHG and air pollution, congestion, public transport capacity and environmental capacity)</td>
</tr>
<tr>
<td>13. Building regulations for high insulation (also EU standards)</td>
</tr>
<tr>
<td>Metropolitan level</td>
</tr>
<tr>
<td>14. Local renewable energy supplies</td>
</tr>
<tr>
<td>15. CHP locally and domestically</td>
</tr>
<tr>
<td>16. Electric car charging infrastructure</td>
</tr>
<tr>
<td>17. Hydrogen and fuel cell truck and bus infrastructure</td>
</tr>
<tr>
<td>18. Electric/fuel cell public transport</td>
</tr>
<tr>
<td>19. Integrated transportation (walking, park and ride, bus, tram, light rail, metro, interchanges) for local, regional, national, European travel</td>
</tr>
<tr>
<td>20. Integrated spatial planning and transportation (reducing the need to travel). Mixed use, higher density and transport related</td>
</tr>
<tr>
<td>21. New building and retro fitted building insulation programmes</td>
</tr>
<tr>
<td>22. CCS for cement, iron and steel industries etc.</td>
</tr>
<tr>
<td>23. Waste management and recycling</td>
</tr>
<tr>
<td>24. Local food economies and low carbon agricultural practice</td>
</tr>
<tr>
<td>25. Afforestation, water management and micro-climate management</td>
</tr>
</tbody>
</table>
The GRIP Inventory Methodology

About the GRIP approach

GREENHOUSE GASES, and their measurement using inventory techniques, involves a broad spectrum of organisations. This has led to a variety of methodologies being developed to calculate them. As a consequence making comparisons between the results of these inventories is convoluted. Some methods exclude certain emissions sources, others allocate emissions in differing ways. Some inventory methodologies use detailed data sets, whereas others use an entirely top down approach – where national data is disaggregated to the regional scale using scaling factors such as employee numbers or population. These differences are magnified by the different data sets available in different European regions as well as differences in the depth of understanding regarding emissions and their sources. The GRIP for Europe inventory approach had to recognise and embrace these issues, so that transparent methodology could be developed which would ensure that the resulting figures were trustworthy. Such an approach was also required to enable any resulting inventory to be comparable with both the respective national inventory and with those of other regions and years; these, along with visual clarity of the results, were all important considerations for the regions.

GRIP in Europe

To satisfy these requirements, the GRIP for Europe methodology adopted the same format as the original GRIP inventory methodology applied in the UK. This format comprises three different levels of methodology to calculate each emissions source. This is similar in format to the tiered approach provided by the IPCC for countries to form national inventories. Indeed, the methods chosen for use in GRIP for Europe are congruent with these international standards. This new methodology maintains the following five criteria of its predecessor:

1) It is timely in its approach
2) Adaptable to differing data sets
3) Transparent in nature
4) Easily replicable, and
5) It has a clear reporting structure.

The methodology provides a framework upon which a web based tool sits, that ensures no double
counting of emissions takes place, and that there is a concrete flexibility to enable comparisons between regions to be conducted without ambiguity. Each level of methodology relies on a different level of data availability. The GRIP for Europe level 1 approaches are the most accurate, with level 3 approaches having the highest level of uncertainty associated with them. Level 1 data is derived from detailed and accurate data sets that are disaggregated. Level 2 data is estimated or inferred from other aggregated data sets which might themselves be reasonably accurate. Level 3 data is estimated from large-scale demographic data sets, such as population or GDP data.

The key benefit of GRIP is that every emissions source identified in it has three methodological levels associated with estimating its significance. This means that whilst data may be limited for a given emissions source...
in a region – information for dairy cattle, for example, might require a level 3 approach for a particular year – a region may also have detailed data for another source such as industrial fuel consumption, thereby enabling a more accurate level 1 approach to be employed. The GRIP for Europe tool presents these results in a colour coded format, to a high level of specificity.

This takes the following format: emissions estimated using a level 1 approach are presented in green, level 2 approaches in orange and finally level 3 approaches are presented in red. This means that a reader can immediately draw comparisons between the accuracy of an emissions source and make quick sensible comparisons of that source between not just regions and years, but also the respective country’s national emissions inventory. The same colour coding applies to the inventory tool, where red boxes symbolise the data required for level 3 approaches, orange for level 2 and green for level 1.

In this document, each data set is presented using a pie chart to show the levels of emissions for a particular sector, along with an associated bar chart which shows the GRIP level achieved for different parts of that sector (see diagram).

EURO: the first step

The basic structure

The GRIP approach was implemented in phases. Members of METREX were invited to join the EURO network, which had been set up specifically to implement the GRIP approach in a number of regions across Europe. In total, there are eighteen partners in the EURO network.

The first stage was to hold a partner meeting in Amsterdam in May 2008, at which potential partners could discuss their motives, aspirations and aims and objectives for the network, and commit themselves to the project. The final list of partners was confirmed in December 2008.

The second stage, in January 2009, was to hold an inception meeting in Hamburg, the different partners received hands-on training in how to use the inventory tool, and were able to use it to make preliminary explorations of the data sets available.

GRIP ‘levels’ & the use of charts in this document

In this example, which shows totals for the four sectors of a region, we can see a pie chart showing the different percentages of greenhouse gas emissions (which are expressed as Carbon Dioxide equivalent, or CO₂e) that can be attributed to different sectors. Here we can see that most of the greenhouse gas emissions for this region come from energy.

The bar chart shows the data ‘level,’ where level 1 (green) is data about which we are most certain, and level 3 data (red) is data about which we are least certain. Level 2 (orange) lies between the two. The bar chart is presented as a percentage, so we can see that for energy, we are very certain about the quality of roughly 5% of the data, we are reasonably certain about the quality of 35% of the data, and we are uncertain about the quality of 50% of the data.

Allocating levels to the data in this way enables policy makers to quickly see the strengths and weaknesses of their data sets (see text for derivation of the different GRIP levels).
OVER a period of twelve weeks in early 2009, five workshops were held in Paris, Turin, Frankfurt, Athens and Stockholm. At each of these workshops, three or four groups of partners plus the project leaders were able to discuss the progress they had made on the inventory, and to put detailed questions to the lead partners about specific points and issues that they had come across in the course of their data collection activities.

The entire inventory is completed on-line, so that the project leader can access the raw data for collation and analysis (the results of which are set out in this document). The partners also have access to an off-line version, so that the inventory can be completed when no reliable network connection is available, and then uploaded to the central servers at a later date.

GRIP as a learning experience

One of the key aims of the EU CO2 project is to empower city-regions not only by providing access to the final analysis of the emissions data, but also by encouraging dialogue between the EU CO2 partners about how to use the inventory tool and to understand the data itself.

This is a crucial element of the project, because the key to properly understanding greenhouse gas emissions in general is to acquire an in-depth knowledge of the sources and nature of those emissions. So in the EU CO2 project, the partners have ‘hands-on’ experience of the data, and this enables them to see exactly which sectors in their region are emitting which greenhouse gases, and how much. This information provides a valuable overview of potential areas of intervention, and so enables the partner regions to develop policies that are better targeted, more efficient and more realistic than would be possible without this detailed knowledge.

The expert knowledge that is developed in the region as a consequence of this process does of course risk being undermined unless the tools necessary for its application continue to be available. The GRIP inventory tool will therefore continue to be freely available for use by the partners in perpetuity.

What this means in practice is that having once learned how to use it, and gained this valuable expertise (in the course of this project), partners are in a position to continue using it over the years. They can therefore update and develop their emissions inventories, and in so doing, strengthen the long-term foundations of their regional policies pertaining to greenhouse gas emissions.

THE EU CO2 project does not, however, stop at inventory compilation, which is the first stage of three. The second stage is a scenario tool which will assist policy makers in developing their long-term visions for their regions, and in enhancing their greenhouse gas mitigation strategies. The data gathered for the inventory will be suitable for feeding into this scenario tool, which is discussed in the final chapter of this document. The third stage, is the planning process itself; putting strategy into practice.

Dr Sebastian Carney
University of Manchester
sebastian.carney@grip.org.uk
+44(0)161 306 6439

The GRIP main page can be reached at:
http://www.grip.org.uk/Home.html

The inventory tool can be reached at:
http://www.carboncaptured.org.uk
The Greenhouse Gas Regional Inventory Protocol (GRIP) has three methods to estimate emissions from each emitting sector. The method that is applied is dependent on the level of data available in each region.

The key calculation that runs throughout this methodology is:

$$E_{RGX} = R_{XA} \times EF_{GXy}$$

Where:
- R is the Region
- X is the activity under examination (measured or estimated)
- EF is the emissions factor
- G is the greenhouse gas
- Y is the Regions nation.

The emissions of GHG (G) (CO_2, CH_4, N_2O) emanating from activity (X) in region (R) is equal to the level of activity (X) occurring in Region (R) multiplied by the Emissions Factor (EF) for GHG (G) for the activity (X) in Country (Y).

In GRIP we try to find out as much data about the activity within the region, whether this is energy consumption by sub-sector, farm yard animal numbers or fertiliser application to crops and so on.

When a measured amount of activity is known within a region a GRIP level 1 method is applied. When a measured amount of the activity is not available there needs to be a way of estimating it.

This is the main alternative when measured data is not available (the remaining one is to do nothing).

Therefore there needs to be a way of estimating the activity (X). This is the orange (level 2) and red data (level 3) inputted and outputted by the GRIP tool.

$$Activity_{XR} = \left(\frac{RI}{NI}\right) \times NX$$

Where:
- R is the Region
- N is National
- X is the activity under examination
- I is the indicator eg GDP per household, Expenditure on fuels, Waste incinerated / landfilled / recycled in tonnes
- H is Households

The ESTIMATED level of activity of emissions source (X) in Region (R) is equal to a Regional Value (I) multiplied by the Emissions Factor (EF) for GHG (G) for the activity (X) multiplied by the National activity (N_X).

$$Activity_{XR} = (RI / NI) \times NX$$

Where:
- R is the Region
- N is National
- X is the activity under examination
- I is the indicator eg GVA (Gross Value Added), Population

The ESTIMATED level of activity of emissions source (X) in Region (R) is equal to a Regional Value (I) divided by the national indicator (NI) multiplied by the national activity.
Regional Overview

A comparison of the regions using inventories from stage 1 of EU CO\textsubscript{2}

The Regions considered in this brochure are collectively responsible for 11.5% of the European Community’s Emissions. They are therefore a key part of delivering Europe’s emissions reductions targets. They are taking the lead by operating at this level to explore how they can help deliver the changes necessary to help mitigate climate change.

This report presents the results of the first stage of the EU CO\textsubscript{2} project, inventory formation. In this section we present an overview of the greenhouse gas emissions from each partner region. Subsequently the results of the inventories are presented on a region-by-region basis in greater detail. The emissions inventories, in accordance with the GRIP learning focused approach, have all been compiled by regional representatives. This has been done to enable these representatives to gain a better insight into the emissions sources within their region, so that they are better placed to explain the results of the emissions inventories – within their region. All the data inputted on to the GRIP inventory tool has been done by these representatives.

The results show that the EU CO\textsubscript{2} project partners are responsible for 455,233kt CO\textsubscript{2}e of emissions in 2005, this represented 11.5% of the emissions from the European Community (EC). The regions account for 25% of the EC’s 500 million inhabitants. The amount of CO\textsubscript{2}e released varied between partners, with this being a function of the nature and type of industry, the energy mix, the manner in which waste is treated and the size of the agricultural sector within each region. The overall split of emissions across the partner regions is presented in Overview Chart 1, the total for the European Community is presented in Overview Chart 2. This shows that the share of emissions from the partner regions is more dominated by energy emissions than the European Community as a whole. This is largely due to the lower amount of agricultural activity in the partner regions. The insert on Overview Chart 1 shows that 70% of the emissions estimated from the EU CO\textsubscript{2} partners were performed using level 1 methods, 20% with Level 2 methods and 10% with Level 3 methods.

Overview Chart 3 shows the overall emissions released in each region, together with the relative size of each emissions source. This chart shows the large difference in emissions between the partner regions. Part of this data can also be represented in another way, which is displayed in Overview Chart 4. This chart shows the contribution of each emissions source to overall emissions in each region.

Due to the significant differences in terms of overall emissions between the regions there needs to be a way...
of comparing the different regions. One of the mechanisms for doing this is to use per capita emissions, or emissions per person.

Of the 18 partner regions, the region that emitted the most CO\(_2\)e was Île De France at 59,644kt CO\(_2\)e (although one of the lower emitting regions on a per capita basis (5.2TCO\(_2\)e)). The region emitting the least was Oslo 3,629kt CO\(_2\)e (Oslo also had the lowest emissions per capita at 3.5tCO\(_2\)e).

On average the emissions per capita across the partner regions was 9.65tCO\(_2\)e, which was below the national (of the partner regions) average of 10.2tCO\(_2\)e. However, this former figure is largely distorted by very high per capita emissions in Rotterdam, where there are four petroleum refineries (which are large CO\(_2\)e emitters). Therefore when considering the sum of emissions across the partner regions we discover that emissions per capita were 8.45tCO\(_2\)e, compared to a European Community average of 8.4tCO\(_2\)e per person. These figures can be seen on Overview Chart 5.

Overview Chart 5 shows that five of the eighteen partner regions had higher per capita emissions than those displayed in their host nations. This is mainly due to higher industrial activities to population ratios in the regions in comparison to the host nations. In three regions: Napoli, Oslo and Stockholm emissions were less than half of the per capita emissions displayed in their host countries. In the case of Stockholm this can be largely explained by the use of biomass for heat generation within their region in comparison to that nationally. In Oslo this can largely be explained by the lower amounts of agricultural and industrial activity in comparison to Norway as a whole. In Napoli this may be explained by the lower amounts of economic activity in both the service and industrial sectors to that displayed in Italy. In the remaining regions emissions are consistently lower than their nation’s average, with this being explained by a lower industrial activity of the region, a higher household density and lower agricultural emissions. Furthermore, certain regions use more efficient mechanisms of energy production such as Combined (Cooling) Heat and Power (C(C)HP) – which reduce the overall load. Largely urbanised regions such as these also afford opportunities for lower energy lifestyles due to the location of services with respect to where people live.

A high- or a low-emissions-per-capita should not always be interpreted as a good or a bad thing. The key issue to consider is the activity that causes these emissions. The emissions that are presented in this document relate to the emissions that are emitted within the region, with the emissions associated with electricity being additional. A region may have low emissions per capita but be heavily reliant on goods and services from outside the region. Indeed a region may have high emissions but provide a range of goods and services to others, Rotterdam is a good example of this – having a series of petroleum refineries. The charts should not, therefore, be considered as a league table. Rather, lessons from partners should be transferred as to the reasons for their lower, or higher emissions. This is a function of the scale of Energy, Industrial Process, Agricultural and Waste activity in each region.

Energy

Overview Chart 6 displays the total emissions by energy sub-sector across the partner regions. It shows that emissions from fugitive sources contribute the least to overall emissions, with residential sector emissions contributing the most, closely followed by Transportation. Turning back to Overview Chart 4 we see that 8 of the regions identified that they did not have any energy industry activity within their region, so consequently no emissions allocated to them. It also shows the consistently high contribution that Transport makes to total emissions in each region – to the extent that it dominates emissions in Oslo and Stockholm.

The emissions from the energy sector are a function of the type of fuel combusted. This is usually considered in terms of a consistent unit of
energy: joules, watt-hours, tonnes of oil equivalent – in GRIP we use GWh. When combusted solid fuels emit the highest amount of CO2e per GWh. This is followed by liquid, gaseous and biomass fuels. This has additional implications for electricity generation – as electricity produced from coal is usually more carbon intensive than electricity produced by natural gas.

Therefore the emissions in the regions from energy are determined firstly by the type of fuels combusted by each sub-sector and, secondly by the technologies used to produce electricity and, heat/cooling for district heating/cooling. The remainder of the emissions in this sector are determined by the presence of Coal, Oil and Gas extraction activities.

The key reason for Stockholm’s low emissions is its large heat distribution network powered by biomass and the low carbon intensity of Sweden’s electricity system. The key reason for Oslo’s lower emissions is due to Norway’s very low carbon electricity grid – and its use of electricity as its main source of heating buildings. Turin, Veneto and Stuttgart all display higher emissions and this is largely due to the comparatively higher levels of industrial activity within their region. This is because industrial activity is generally more energy intensive than service based activity. When this energy is sourced from fossil fuels the emissions are going to be higher than when it is sourced from renewable energy sources. This poses a series of questions for the short-, medium- and long-term – including: where should industrial activity be based? Should it be near to renewably abundant areas? Should the decisions regarding where to produce goods be carbon-market driven, or should such decisions operate ahead of such market?

Industrial Processes

Overview Chart 7 shows the relative contribution of the four key emissions sectors to overall emissions. The chart shows that the majority of the regions had a small amount of industrial process emissions, which were largely caused by the maintenance of products such as air conditioning units. These emissions are particular to certain types of industrial sites and activities. The emissions from this category are released from non-energy sources, they are non-combustion chemical reactions and leakages of certain gases. The size of this sector is therefore, mostly dependent on the existence of the industry. The chart shows us that Veneto, Turin and Paris had the largest emissions from this sector, with this being due to the nature of industry within their region.

Waste

Overview Chart 7 shows the relative contribution of Waste to the four key emissions sectors to overall emissions. The chart shows that every region emitted at least some GhG’s from this sector. The emissions varied by region largely depending on the regions propensity to landfill, combust or recycle their waste. Waste emissions are a function of these, with emissions from land-filling waste generally being the highest, higher still if it is at un-managed landfill sites. The emissions per person varied considerably between the partner regions - with Brussels and Stockholm emitting the least, with this largely determined by the comparatively larger level of waste combustion and recycling in the region compared to other regions in this document

Agriculture

Overview Chart 7 shows the relative contribution of Agriculture to the four key emissions sectors to overall emissions. The chart shows that there were agricultural emissions released in every region. The emissions varied between the regions, the emissions in Brussels, Helsinki and Oslo were the lowest. With emissions being the highest in Ille de France, Hamburg and Veneto. These emissions statistics are purely a reflection of the level and nature of agricultural activity within each region. The emissions are largely determined by the amount of
farm yard animals, the treatment of their waste and, the amount of fertilisers (both organic and in-organic) applied to the soil.

It should be noted that whilst the regions have greatly differing levels of emissions associated with them in this inventory, it is likely not to be symptomatic of the emissions that are caused to provide the food that their inhabitants eat. This means that the true impact will extend beyond the region.

What does this data tell us?

This data, together with the data presented over the next 72 pages tells us what GhGs were released in the partner regions in 2005. The figures provide us with a baseline upon which scenarios may be set and policy may be informed. The figures show us the differences between the partner regions emissions and the associated activities that drive them. It enables for the first time, these regions to compare themselves to each other in terms of their emissions released using a consistent methodology.

In order to plan for mitigating climate change, we need to be aware of the emissions that we release each year, so that we can control them downwards, which will help stabilise the atmospheric concentration of Greenhouse Gases (see table below). This requires us to understand the activities that cause emissions in our regions and cities. Furthermore, we need to develop our understanding of how to mitigate them by clarifying what needs to be done, and what powers cities and regions have now, and require, to make these goals a reality. Therefore, reductions in demand for energy and changes in how energy is supplied need to be considered urgently. Mitigating climate change requires substantial cuts in emissions in the short-, medium and, long-terms. We must therefore consider how and where the energy services that we rely upon are produced. So that by displacing/changing activity in one region does not lead to an overall increase in GhG globally.

This data tells us what activity is causing what emissions. The underlying data – available separately – tells us more detailed information regarding, for example, energy consumption, by type, by sector.

With a good understanding of activity, energy consumption and associated emissions policies can be considered that tackles the issues that are pertinent in each region. This represents the second and third stages of EU CO2, which are discussed in the chapter Next Steps, towards the end of this document.

<table>
<thead>
<tr>
<th>Classification of recent stabilisation scenarios according to different concentration targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Source: Climate Change Committee Report UK)</td>
</tr>
</tbody>
</table>
Attica

ATTICA comprises one region, including the capital Athens, subdivided into four (4) prefectures. Included in the region are the islands of Salamina, Egina, Poros, Hydra, Spetses and Kithira. 65 percent of the region is semi-mountainous, 30 percent lowland and 5 percent mountainous. The region has a temperate Mediterranean climate with 17.4 °C of mean annual temperature in Athens.

Despite its relatively small size (3,808 square kilometres), Attica is of great political, economic and historical importance, containing the national capital, Athens, which is the leading centre in terms of population, economy and culture. The region's economy is based on the development of industry and services. The boom in building activity has reduced the amount of agricultural land.

Attica has the highest concentration of manufacturing, commercial and banking activity and is home to 36 percent of the population of Greece.

It has both light and heavy industry. It is the main hub of communications in Greece, with facilities for the rapid transport of raw materials and finished products, principally through the port of Piraeus, which is linked directly to all the main ports of the Mediterranean, and also by road, rail and air. The region accounts for 40 percent of total national employment and has a plentiful supply of manpower, particularly skilled labour. It is the main educational centre of the country, with thousands of students attending its establishments of higher education. It also has a wealth of ancient monuments and sites (Parthenon, Arhaia Agora, etc.), which attract millions of visitors from all over the world.

The primary sector (agriculture, forestry and fisheries) is not enough developed and accounts for barely 2 percent of regional GDP. Attica is the largest industrial centre in the country, and the secondary sector (manufacturing, energy and construction) contributes 28 percent of the region's GDP. The region's heavy industry (oil refining, shipbuilding, mechanical engineering, etc.) and light industry (tobacco-processing, textiles, etc.) account for over 50 percent of the industrial goods produced in Greece.

The tertiary sector (transport, communications, distributive trades, banking and insurance) contributes 33 percent of regional GDP. Athens and Piraeus are the largest commercial centres in Greece, with large numbers of major foreign and Greek companies, both privately and publicly owned, and the largest retail establishments. The other sectors (housing, public administration, health, education and other services), basically belonging to the public sector, contribute 37 percent of regional GDP. Growth in regional GDP is higher than the national average.

The concentration of population in Athens has deteriorated the natural environment and the city has become one of the highly polluted capitals of Europe. Population showed some signs of stabilisation around mid-90's, but a new surge has been experienced since then due to a large number of people coming to live in Greece from poorer countries of Eastern Europe, Asia and Africa. The pressure on housing in Athens has resulted to the reduction of open spaces inside the city, while in the rest of Attica the forest areas are often being degraded not only by urban expansion but also by forest fires which are a rather common phenomenon of the summer months in the Mediterranean.

The constantly increasing number of cars, which brings average motorisation rate closer to Western European standards, narrow streets and insufficient parking facilities are creating major traffic problems. The vehicle exhaust fumes, factory chimneys and central heating plants are pouring out the chemical smog, which had become a permanent feature of the sky over Athens for more than 15 years since 1980. The situation is – only partly – reversed due to the implementation of a rather dense underground metro network and the increase of available off-street parking facilities. Despite the admission of each car into the centre of the city on alternate days only, the pollution levels occasionally exceed the safety limits, and emergency measures have to be taken.
The previous page contains an overview of the Athens Region. This background offers a useful insight into the sources and size of GHG emissions that we expect to see in the region. The overview tells us that Athens contains the largest industrial centre in Greece as well as hosting significant service sector.

The inventory for the Athens Region is presented below. The inventory is displayed by sector: firstly the emissions from the combustion, distribution, transformation and extraction of energy (Athens Chart 1); secondly the emissions from industrial processes (Athens Chart 2); thirdly the emissions from agriculture (Athens Chart 3) and finally the emissions from waste (Athens Chart 4). We then present the total GHG emissions from the region and the breakdown of the emissions in the whole of Greece (Athens Charts 5 and 6).

Emissions from the Energy Sector

Greenhouse gas emissions from the combustion, distribution, transformation and extraction of energy are of three types: carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O). The levels of emissions vary depending on the manner in which energy is combusted/distributed/transformed/extracted, as well as the type of energy source (gas, solid, liquid, electricity etc).

The size of the emissions released from a region is determined by the type of energy combusted/distributed/transformed/extracted within it as well as how and where the electricity it consumes is produced. In this summary we present overall data by sector, there are, depending on the levels potentially in excess of 1000 variables underpinning these figures. These are all available separately from the author.

The emissions from the energy sector in the Athens area in 2005 was 35719 kt CO₂e. Athens Chart 1, on the opposite page presents the emissions associated with energy from the region. It shows the relative size of the main components of the energy sectors emissions in terms of CO₂e. It shows that, in Athens the emissions from the residential sector accounted for 27% of energy emissions, the service sector made up 30% of CO₂e emissions, the industrial sector 12% and the transport sector 22%. The energy industry of Athens represented 4% of emissions and finally fugitive emissions account for 5%. Underpinning all of these figures are sector specific amounts of energy consumed / combusted and their associated emissions, all considered in terms of the GRIP level used to estimate them.

In GRIP there are three different methodological levels associated with each emissions source, depending on the data available to carry out the emissions calculations. The use of GRIP level 1 methodology requires information collected locally on, in this case, energy consumption by type from different sectors, and is the level with which the highest confidence can be attached to the emissions reported. The insert in Athens Chart 1 shows the GRIP levels used for each sub-sector as a percentage, for estimating the emissions from each sub-sector. This insert shows that level 1 methods were used to estimate 100% of the fugitive emissions, level 2 methods were used to estimate emissions from the industrial sector, transport sector, energy industry and service sector emissions and level 3 data was used to estimate 100% of residential emissions. This means that there is a clear need for local energy information to be collected. This will enable year-on-year energy based emissions to be compiled for the Athens area in the future.

Industrial Processes

Industrial process emissions include the GHG emissions that are released from non-combustion chemical reactions at certain industrial sites, in addition they include emissions that are released during the maintenance of products such as air conditioning units. This is the only sector in a GHG emissions inventory that includes all six Kyoto GHGs.

In the case of this region the emissions are 4 383 kt CO₂e. The breakdown is presented in Athens Chart 2, and is comprised of 63% from mineral products, 20% from the production of halocarbons and SF6 and 17% from the consumption of halocarbons and SF₆. This sector is largely a reflection of the nature and extent of the industry within the region. The data shows that Athens has a range of industrial sites that are responsible for these emissions. In terms of this sector, level 1 methods were used to estimate 100% of the emissions from mineral products and the consumption of halocarbons and SF₆ and level 2 methods were used to estimate the emissions from the production of halocarbons and SF₆.

The industrial sites responsible for these emissions are nearly always subject to monitoring requirements and it requires a relationship to be set-up with the regulatory body that monitors the large industrial units in the region. This has clearly been done here. This relationship can be
built upon to enable future versions of the emissions inventory to be populated with more level 1 data.

Agriculture

Agricultural emissions include CH₄ and N₂O. They are primarily associated with farmed animals and the use of organic and inorganic fertilizers. There are additional emissions associated with the combustion of agricultural produce on fields.

The inventory shows that 449 kt CO₂e were emitted from the agricultural sector within the region in 2005. Athens Chart 3 shows the total is made up of 7% from enteric fermentation, 6% from manure management, 87% from agricultural soils and, 0.5% from other sources. These emissions have been estimated using level 1 approaches for 100% of the emissions from enteric fermentation, manure management and other sources, level 2 methods have been used for 100% of the emissions from agricultural soils.

Waste

Waste emissions include CO₂, CH₄ and, N₂O. The emissions are mostly associated with the degradation of putrescible waste deposited to landfill sites, the amount of wastewater, whether it is domestic or industrial, and with the incineration of waste. The levels of emissions are reflected by the amount of waste that is deposited to landfill sites, the management of the site, the amount that is recycled and the amount of waste that is incinerated.

The inventory shows that 1 019 kt CO₂e were emitted from the waste sector in 2005. As shown in Athens Chart 4 the total is made up of 13% from managed waste disposal, 55% from unmanaged waste disposal, 32% from waste water and 0.2% from incineration.

The emissions have been estimated using level 1 methods for 100% of the emissions from managed waste disposal, level 2 methods have been used to estimate 100% of unmanaged waste disposal, waste water and incineration emissions.
The emissions for the whole of the Attica Region are displayed in Chart 5 above, the inset shows the percentage of GRIP levels that have been used to estimate the emissions. These emissions represent the sum of the emissions presented on the previous two pages. The emissions for the country are displayed in Chart 6 above. This shows the relative difference in the emissions in the region to that displayed nationally. The region has a comparatively higher share of energy emissions to that displayed nationally and a substantially lower share of agricultural emissions. The emissions per capita of the region are 10.4tCO\textsubscript{2}e compared to 12tCO\textsubscript{2}e nationally. This can be explained by the lower agricultural emissions of the region compared to that displayed nationally and also by the lower per capita energy consumption in the region compared to that of wider Greece. Regions with a similar per capita emissions include Turin, Veneto and Ljubljana. The emissions per capita are above the average of the regions and are also above the European average. They are similar in size to the emissions per capita of Italy. Although this needs to be considered in terms of the level of the methodology used, which in this case is largely level 2 and level 3 methods. Furthermore, the emissions are effected by the type of electricity generation in Greece that is more carbon intensive than those of other countries.

The table below displays the emissions for the whole of Attica on a sector-by-sector basis and the main sub-sectors of the energy sector. The results are displayed in terms of each of the six Kyoto greenhouse gases. The table shows the relative contributions that each gas makes from each source, with the CO\textsubscript{2}e amount displayed also. This table clearly shows that CO\textsubscript{2} emissions from the energy sector dominate the emissions from this region. These account for 93% of CO\textsubscript{2} emissions and 85% of CO\textsubscript{2}e emissions. This is a common feature to all the emissions inventories presented in this brochure. It is this data and the activity data underpinning it that drives the GRIP Scenario Tool, which is the platform of the GRIP Scenario process. This process enables regions to look to form scenarios of how they can reduce their energy emissions within their region. This can then be used to form preferred strategies on how the region may develop. This is the next step of the EU CO\textsubscript{2} project, and is explained in more detail at the end of this document.

The table below and Attica Chart 5 above show that the energy sector is responsible for 86% of emissions, Industrial Processes for 11%, Waste for 2% and Agriculture for 1% of emissions. This shows the clear need to focus on the energy system needed for Attica as a low carbon region of the future.

<table>
<thead>
<tr>
<th>Sector</th>
<th>kt CO\textsubscript{2}</th>
<th>kt CH\textsubscript{4}</th>
<th>kt N\textsubscript{2}O</th>
<th>kt HFC</th>
<th>kt PFC</th>
<th>kt SF\textsubscript{6}</th>
<th>kt CO\textsubscript{2}e - GWP100</th>
<th>GRIP % Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy - Total</td>
<td>35282.60</td>
<td>4.45</td>
<td>1.11</td>
<td></td>
<td></td>
<td>35718.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>9531.45</td>
<td>1.13</td>
<td>0.12</td>
<td></td>
<td></td>
<td>9592.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Services</td>
<td>10828.98</td>
<td>0.17</td>
<td>0.14</td>
<td></td>
<td></td>
<td>10876.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry</td>
<td>4088.56</td>
<td>0.18</td>
<td>0.14</td>
<td></td>
<td></td>
<td>4134.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Industry</td>
<td>1515.26</td>
<td>0.05</td>
<td>0.01</td>
<td></td>
<td></td>
<td>1520.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>7466.35</td>
<td>2.68</td>
<td>0.67</td>
<td></td>
<td></td>
<td>7730.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fugitive</td>
<td>1852.00</td>
<td>0.23</td>
<td>0.02</td>
<td></td>
<td></td>
<td>1863.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Processes</td>
<td>2752.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1629.49</td>
<td>0.00</td>
<td>4383.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste</td>
<td>1.59</td>
<td>42.09</td>
<td>0.43</td>
<td></td>
<td></td>
<td>1018.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>1.90</td>
<td>1.32</td>
<td></td>
<td></td>
<td></td>
<td>449.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>38036.20</td>
<td>48.44</td>
<td>2.85</td>
<td>1629.49</td>
<td>0.00</td>
<td>41569.38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BOLOGNA PROVINCE covers an area of 140km² and sits within the region of Emilio-Romagna, Italy. It is home to 0.9m people accommodated in 0.46m households.

The Gross Domestic Product (GDP) of the region in the year 2004 (the year of the inventory) was valued at €29.4Bn. This level of economic activity equated to GDP per capita of €32,678, above the Italian average of €22,678. The level of economic activity within the region of Emillia Romagna is 25% above the Italian average and this is in part due to the Bologna Province.

Different industrial sectors and activities have differing levels and types of emissions associated with them. Some industries are highly carbon- and energy-intensive (iron and steel, for example) due to the amount and type of fuel they consume. Other industrial groups (such as cement and chemical manufacturing) are associated with high levels of "process emissions". Process emissions occur as a result of the nature and rate of a given activity and may result from, among other possibilities, chemical reactions or as a direct consequence of product use. The agricultural sector is also particularly important due to its contribution to both CH₄ and N₂O emissions which arise both from the use of fertilisers and from animals.

The region houses a large amount of heavy and polluting industrial activity (34% GDP). In the year 2004, the region accounted for just under 10% of Italy’s manufacturing output. The region’s agricultural industry was responsible for 4% of the region’s GDP in 2004.

The Bologna province holds both the most important motorway and rail interchanges in Italy. These carry the majority of traffic passing between north and south Italy. Of the 1,080 industrial areas within the region 85% of them are within 8km of the principal road network. The main railway line departing from the region is electrified, which results in lower direct emissions than a non-electrified route. Bologna Province also has two main airports, Bologna, and Bologna Forli.

Emissions from Bologna

The energy sector, including domestic, industrial energy consumption, transport and fugitive emissions, accounts for 99.9% of regional CO₂ emissions (8,175kt CO₂), with CH₄ and N₂O emissions adding an additional 742kt CO₂Eqv, making a total of 8,927kt CO₂Eqv for the year 2004. The chart above shows the breakdown of Bologna GHG emissions, from the energy sector in the year 2004.

Direct domestic emissions occur from the combustion of solid, liquid and gaseous fuels, burned in households across the region. Indirect emissions occur through the consumption of electricity. A home in the region may be heated by gas- or liquid-fired central heating, electric heating or indeed a combination of these. Emissions per household in Bologna Province are 4.9t CO₂ emissions per person are 2.47t CO₂. Total domestic emissions were 2,438kt CO₂Eqv.

Total emissions from the energy consumption by commercial, public administration and agricultural sectors in Bologna Province for the year 2004 were estimated to be 1,341kt CO₂. Total emissions from the energy consumption of the industrial sector were estimated to be 2033kt CO₂. There are no petroleum refineries, coke manufacturers, blast furnaces or oil and gas extraction taking place in this or any of the other pilot regions. Total emissions from other fugitive sources in the Bologna Province region for 2004 were estimated to be 270kt CO₂Eqv.

Analysis of the emissions figures show that road transport is the largest contributor to transport emissions in Bologna Province emitting 2159kt CO₂ in 2004. However, it should be noted that emissions produced during the 'cruise' part of international flights from Bologna’s air ports are not included in the analysis in accordance with IPCC emissions accounting guidance and may
therefore under-represent the contribution of this transport source.

According to our communication with Bologna Province, there are no industrial process emissions released that are covered under international standards (such cement and chemical manufacturers).

The largest source of agricultural methane emissions arise from enteric fermentation followed by emissions from the management of animal waste. The levels of emissions are dependent on the number and type of farm animals, with dairy cattle being the most significant as well as the methods of waste management employed. The largest source of N₂O from agriculture is from agricultural soils resulting from the application of nitrogen fertilizers. The emissions in Bologna Province from the agricultural sector amount to 716kt CO₂Eqv.

The management of waste from Bologna Province was responsible for the emission of 253kt of CO₂ Eqv in 2004. Overall the emissions for the Bologna Province region are estimated at 10.9tCO₂Eqv per person, and 0.34ktCO₂Eqv per unit of GVA.

<table>
<thead>
<tr>
<th>Sector</th>
<th>kt CO₂</th>
<th>kt CH₄</th>
<th>kt N₂O</th>
<th>kt CO₂ - GWP100</th>
<th>kt HFC</th>
<th>kt PFC</th>
<th>kt SF₆</th>
<th>kt CO₂ - GWP100</th>
<th>GRIP % Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>2265</td>
<td>0.1</td>
<td>0.55</td>
<td>2487.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Services</td>
<td>1341</td>
<td>0.08</td>
<td>0.4</td>
<td>2487.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry</td>
<td>2033</td>
<td>0.13</td>
<td>0.8</td>
<td>2283.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Industry</td>
<td>220</td>
<td>0.02</td>
<td>0.16</td>
<td>270.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>2159</td>
<td>0.51</td>
<td>0.03</td>
<td>2179.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fugitive</td>
<td>157</td>
<td>5</td>
<td>0.09</td>
<td>289.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Processes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>69</td>
<td>3</td>
<td>0</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste</td>
<td>3</td>
<td>11</td>
<td>0.06</td>
<td>252.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>13</td>
<td>1.43</td>
<td>0</td>
<td>716.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8178</td>
<td>29.84</td>
<td>3.52</td>
<td>69</td>
<td>3</td>
<td>0</td>
<td>9967.84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Founded in the tenth century in the valley of the river Zenne, the name Brussels, originally from an old Flemish word meaning marsh-land, refers to the river that is still part of the city, although it has been vaulted in the 19th and 20th century. The topography influences the further social evolution of the city: the bourgeoisie settles on the higher plateaux in the east and industries develop on the low-lying plains on the opposite riverbank. This social separation is still visible today: the luxury districts on the higher bank and the popular districts in the lower parts of town.

Since the independence of Belgium in 1830, Brussels is the capital of the country and houses the Belgian authorities. 1989 is a turning point in history with the formation of three regions with their own political authorities, for which the City of Brussels as well is the capital. From that moment on the 19 municipalities composing the Brussels-Capital region is physically and culturally encompassed by the Flemish and French speaking regions.

Brussels remains the economic capital of the country, although since the deindustrialisation process in the 1960s, the economy is above all service-based. Of the region’s jobs 43% are concentrated in the City of Brussels, while no other single municipality has more than 7%. In 2005 the GDP of the Brussels-Capital region amounted to 58 000 million euros, or 19% of the country’s total GDP. This is in contrast with the income of the region, because most of the working population lives outside the region. Per capita gross value added at basic prices in the same year came to 57.159 euros, compared wit a national figure of 28.831 euros. The region is known as one of the most green city regions in Europe, with its 8000 ha (+/- 50%) of green space.

Today Brussels is a cosmopolitan region, as people of various origins settle in the capital and count for 26 % of its population. The migration of foreign workers in the 1960s had a centrifugal effect on the former Belgian population in the centre, which migrated to the periphery. The region’s population varies around one tenth of the country’s population and was 1.006.749 in 2005; the City of Brussels counts 142.853 inhabitants. This population is spread out unequally over the area: the south-east of the region is characterized by ‘garden cities’ and important lots with freestanding villas. In contrast, in the north-west the rupture between urban and rural areas is more abrupt due to more densely populated areas with a predominantly unskilled working-class population.

From the 1960s on Brussels got the stature as the heart of Europe as in 1958 it became the headquarters of the European Economic Community (now the European Union), as well as NATO in 1967. The European institutions nowadays occupy an important place in the east of the city centre, Due to its international image, Brussels is an attractive place to international companies as location for their administrative seats.
The previous page contains an overview of the Brussels Metropolitan Region. This background offers a useful insight into the size and sources of GHG emissions that we expect to see in the region. The overview tells us that Brussels has a significantly higher amount of people working in the service sector than that displayed nationally. The energy that it consumes is mostly fossil based, with a relatively high amount of electricity being imported. It has a very small agricultural sector. The emissions from Brussels are similar to those from other regions.

The inventory for the Brussels Metropolitan Region is presented below. The inventory is displayed by sector: firstly the emissions from the combustion, distribution, transformation and extraction of energy (Brussels Chart 1); secondly the emissions from industrial processes (Brussels Chart 2); thirdly the emissions from agriculture (Brussels Chart 3) and finally the emissions from waste (Brussels Chart 4). We then present total GHG emissions from the region and the breakdown of emissions sources from Belgium (Brussels Charts 5 and 6).

Emissions from the Energy Sector

Greenhouse gas emissions from the combustion, distribution, transformation and extraction of energy are of three types: carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O). The levels of emissions vary depending on the manner in which energy is combusted/distributed/transformed/extracted, as well as the type of energy source (gas, solid, liquid, electricity etc).

The size of emissions released from a region is determined by the type of energy combusted/distributed/transformed and extracted within it as well as how and where the electricity it consumes is produced. In this summary we present the overall data by sector, there are, depending on the levels potentially in excess of 1000 variables underpinning these figures. These are all available separately from the author.

The emissions from the energy sector in the Brussels Metropolitan area in 2005 were 7,341 kt CO₂e. Brussels Chart 1, on the opposite page presents the emissions associated with energy from the region. It shows the relative size of the main components of the energy sectors emissions in terms of CO₂e. It shows that the emissions from the residential sector made up 50% of CO₂e emissions, the service sector 24%, the industrial sector 8% and the transport sector 16%. There are no petroleum refineries or solid fuel transformation plants etc in the region and therefore there are no emissions from the energy industry. Finally, fugitive emissions represent 2% of the emissions total from energy. This mix can be explained due to the high economic share of the service sector in the region compared to that displayed nationally, the somewhat higher population density of the region, the established transport links. Underpinning all of these figures are sector specific amounts of energy consumed / combusted and their associated emissions, all considered in relation to the GRIP methodological level used to estimate them.

In GRIP there are three different methodological levels associated with each emissions source, depending on the data available to carry out the emissions calculation. The use of the GRIP level 1 methodology requires information collected locally on, in this case, energy consumption by type from different sectors, and is the level with which the highest confidence can be attached to the emissions reported. The insert in Brussels Chart 1 shows the GRIP levels used, as a percentage, for estimating the emissions from each sub-sector. This insert shows that level 1 methods were used for to estimate 100% of the emissions from the domestic sector, 100% of the service sector, 0% of the industrial sector, 15% of the transport sector, 100% of the energy industry and 100% of fugitive emissions. This means that much of the data entered by the team in Brussels was sourced from local measured data sets. This means that the inventory has been mostly produced using the highest level available data. However, it does identify gaps in the data that is available particularly in the industry and transport sectors. There is potential for improvement in future emissions inventories by improving the data quality of these sectors. By establishing and maintaining the demand for this data in future emissions inventories the organizations that hold it are more likely to release it, enabling more certain year-on-year energy based emissions to be compiled for the Brussels Metropolitan area in the future.

Industrial Processes

Industrial process emissions include the GHG emissions that are released from non-combustion chemical reactions at certain industrial sites, in addition they include emissions that are released during the maintenance of certain products such as air conditioning units. This is the only sector in a GHG emissions inventory that includes all six Kyoto GGHGs.

In the case of this region the emissions...
Emissions are 144 kt CO$_2$e presented in Brussels Chart 2, and is entirely from the consumption of halocarbons and SF$_6$. This reflects the nature and extent of the industry within the region. The data suggests that Brussels does not have any of the industrial sites that are responsible for emissions of GHGs. In terms of this sector, level 1 methods were used to estimate 100% of the emissions from the consumption of halocarbons and SF$_6$.

Agriculture

The agricultural emissions are very low, accounting for less than 0.1% of this region’s emissions. They have largely been calculated using level 1 methods.

Waste

Waste emissions include CO$_2$, CH$_4$ and N$_2$O. The emissions are mostly associated with the degradation of putrescible waste deposited to landfill sites, the amount of wastewater, whether it is domestic or industrial, and the amount of waste which is incinerated. The size of emissions reflect the volume of waste that is deposited to landfill sites, the management of the site, the amount that is recycled and the amount of waste that is incinerated.

Brussels Chart 4 shows that 43 kt CO$_2$e were emitted from the waste sector in 2005. In the case of the region this was comprised of 90% from waste water and 10% incineration.

The reasons for the lower than average emissions from waste compared to Belgium is due to the data entered into the inventory tool regarding the region’s propensity to recycle or incinerate their waste rather than landfill it. The emissions have been estimated using level 1 methods for 0% from managed waste disposal, 0% unmanaged waste disposal, 11% waste water and 0% incineration. These percentages may appear low, however, they are based upon statistics pertaining to waste management – and therefore provide greater confidence in their accuracy that would otherwise be warranted.
THE EMISSIONS for the whole of the Brussels Region are displayed in Brussels Chart 5 above, the inset shows the percentage of GRIP levels that have been used to estimate the emissions. These emissions represent the sum of the emissions presented on the previous two pages. The emissions for the Belgium are displayed in Brussels Chart 6 above. This shows the relative difference in the emissions in the region to that displayed nationally. The region has a substantially higher share of energy emissions to that displayed nationally and a lower share of agricultural and industrial process emissions. The emissions per-capita of the region are 7.5tCO₂ compared to 13.6tCO₂ in Belgium. This can be explained by the lower agricultural and industrial process emissions of the region compared to that displayed nationally and also by the lower energy consumption in the region compared to that of wider Belgium. Regions with a similar per-capita emissions include Helsinki, Porto and Madrid. The emissions per-capita are below the average of the regions and are also below the European average. They are similar in size to the emissions per capita of Portugal and Sweden. Furthermore, the emissions are affected by the type of electricity generation in Belgium that is less carbon intensive than those of other countries and largely imported.

The table below displays the emissions for the whole of Brussels on a sector-by-sector basis and the main sub-sectors of the energy sector. The results are displayed in terms of each of the six Kyoto greenhouse gases. The table shows the relative contributions that each gas makes from each source, with the CO₂ amount displayed also. This table clearly shows that CO₂ emissions from the energy sector dominate the emissions from this region. These account for 96% of CO₂ emissions and 96% of CO₂e emissions. This is a common feature to all the emissions inventories presented in this brochure. It is this data and the activity data underpinning it that drives the GRIP Scenario Tool, which is the platform of the GRIP Scenario process. It is this process that enables regions to form scenarios of how they can reduce their energy emissions within their region. This can then be used to form preferred strategies on how the region may develop. These are the next step of the EUCO₂ project, and are explained in more detail at the end of this document.

The table below and Brussels Chart 5 above show that the energy sector is responsible for 97% emissions, Industrial Processes for 2%, Waste for 1% and Agriculture for less than 1% of emissions. This shows the clear need to focus on the energy system needed for Belgium to be a low-carbon region of the future.

<table>
<thead>
<tr>
<th>Sector</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>HFC</th>
<th>PFC</th>
<th>SF₆</th>
<th>CO₂e - GWP100</th>
<th>GRIP % Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy - Total</td>
<td>7252.24</td>
<td>2.25</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td>7341.33</td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>3668.68</td>
<td>0.34</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td>3682.00</td>
<td></td>
</tr>
<tr>
<td>Services</td>
<td>1758.43</td>
<td>0.10</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td>1763.75</td>
<td></td>
</tr>
<tr>
<td>Industry</td>
<td>559.56</td>
<td>0.02</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td>560.73</td>
<td></td>
</tr>
<tr>
<td>Energy Industry</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>1116.57</td>
<td>0.11</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td>1150.12</td>
<td></td>
</tr>
<tr>
<td>Fugitive</td>
<td>149.00</td>
<td>1.69</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td>184.72</td>
<td></td>
</tr>
<tr>
<td>Industrial Processes</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>144.04</td>
<td>0.00</td>
<td>0.00</td>
<td>144.04</td>
<td></td>
</tr>
<tr>
<td>Waste</td>
<td>0.49</td>
<td>0.79</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td>43.34</td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>0.02</td>
<td>0.06</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td>18.46</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7252.73</td>
<td>3.06</td>
<td>0.28</td>
<td>144.04</td>
<td>0.00</td>
<td>0.00</td>
<td>7547.17</td>
<td></td>
</tr>
</tbody>
</table>
FRANKFURT RHEIN-MAIN is one of the 11 officially recognised metropolitan regions of Germany. For statistical purposes and European comparisons data for the Regierungsbezirk Südhessen (Darmstadt District, NUTS II DE71) are usually used. It lies in the southern portion of the Land Hessen with the kreisfreie Städte of Darmstadt, Frankfurt am Main, Offenbach am Main and Wiesbaden, together with 10 Landkreise. It is dominated by the northern and north-eastern portions of the upper Rhine trench and the adjoining hills of the Taunus, Odenwald and Spessart. The centre of the region is the Rhine-Main triangle that extends beyond the border of the Land to the south, east and west with the cities of Frankfurt and Offenbach am Main.

The Rhine-Main area is a major European transport hub. During peak periods, over 150 000 vehicles a day use the motorways around Frankfurt. Because of its central position in Germany and Europe, Frankfurt am Main is a major rail hub for both national and international services. Frankfurt’s main railway station and, increasingly, the long-distance railway station at Frankfurt airport that began operating in 1999, are major rail hubs on the lines between Paris and Moscow, London and Budapest and Copenhagen and Rome. However, regional transport also plays an important role, with over 350 000 commuters travelling to Frankfurt’s main railway station each day. Then there are the major waterways of the Rhine and the Main. Frankfurt airport is one of the largest in Europe. In and around this densely populated conurbation the Darmstadt district region also has a good deal of open countryside and extensive forests, e.g. in the Kreise of Rheingau-Taunus, Hochtaunus, Wetterau, Main-Kinzig, the Bergstraße and the Odenwald.

At the end of 2002, 3 761 700 people were living in the Darmstadt Regierungsbezirk - 6 percent more than in 1990. Almost a third of the population was living in the four kreisfreie Städte. At 505 inhabitants per square kilometre, the 2002 population density was well above the Land average (288), and the proportion of foreign nationals, at 14 percent, was also higher than for Hessen as a whole (13.6 percent).

Compared to the other two Regierungsbezirke, Darmstadt has relatively more people of employable age at 68 percent. Of these, 69 percent were actually in work. There are also well over 200 000 people from other parts of Hessen or other Länder working here. The Regierungsbezirk is one of Europe’s most productive regions in economic terms. GDP per inhabitant is around 115 percent of that for Hessen as a whole, and in 2002 the adjusted unemployment rate was, at 5.6 percent, below that for Hessen (6.0 percent).

Multinationals have set up here alongside a wealth of SMEs and craft businesses. Pharmaceuticals from Höchst and Darmstadt enjoy a reputation that extends beyond the Land borders, as do cars from Rüsselsheim, leather goods from Offenbach, jewellery from Hanau and wines from the Rhinegau.

Innovative branches in the engineering (mechanical, electrical, environmental), biotechnology and computing industries are increasingly dominating the scene. The European Space Agency’s European Operations Centre (ESOC) is also based in Darmstadt. However, it is the banking and services centre of Frankfurt that is the key to the economic strength of the region. Frankfurt is home not just to the European Central Bank and the Deutsche Bundesbank but also over 300 credit institutions and one of Europe’s leading stock exchanges.

The conurbation also has its environmental problems - refuse, sewage, air pollution, traffic pollution and, last but by no means least, aircraft noise as a result of almost 460 000 take-offs and landings per year at Frankfurt airport. There is considerable demand for land for businesses, infrastructure and housing. The quality of the region’s open space is increasingly acknowledged as an important locational factor.
Emissions from the Energy Sector

Greenhouse gas emissions from the combustion, distribution, transformation and extraction of energy are of three types: carbon dioxide (CO$_2$), methane (CH$_4$) and nitrous oxide (N$_2$O). The levels of emissions vary depending on the manner in which energy is combusted/distributed/transformed/extracted, as well as the type of energy source (gas, solid, liquid, electricity etc).

The size of the emissions released from a region is determined by the type of energy combusted/distributed/transformed/extracted within it as well as how and where the electricity it consumes is produced. In this summary we present the overall data by sector, there are, depending on the levels potentially in excess of 1000 variables underpinning these figures. These are all available separately from the author.

The emissions from the energy sector in the Frankfurt area in 2005 was 44400 kt CO$_2$e. Frankfurt Chart 1, on the opposite page presents the emissions associated with energy from the region. It shows the relative size of the main components of the energy sectors emissions in terms of CO$_2$e. It shows that, in Frankfurt the emissions from the residential sector accounted for 28% of energy emissions, the service sector made up 17% of CO$_2$e emissions, the industrial sector 27% and the transport sector 23%. The energy industry of Frankfurt represented 2% of emissions and finally fugitive emissions account for 3%. Underpinning all of these figures are sector specific amounts of energy consumed / combusted and their associated emissions, all considered in terms of the GRIP level used to estimate them.

In GRIP there are three different methodological levels associated with each emissions source, depending on the data available to carry out the emissions calculations. The use of GRIP level 1 methodology requires information collected locally on, in this case, energy consumption by type from different sectors, and is the level with which the highest confidence can be attached to the emissions reported. The insert in Frankfurt Chart 1 shows the GRIP levels used for each sub-sector as a percentage, for estimating the emissions from each sub-sector. This insert shows that level 1 methods were used to not used to estimate any of the residential sector, industrial sector, transport sector, energy industry or service sector emissions which instead rely on scaled down national data. Only the fugitive emissions were estimated using level 1 data. This means there is a large scope for improvement in future years, the data entered by the Frankfurt team is based on national data sets and has limited economic data on the sub sectors within the industry sector. Furthermore as Frankfurt hosts major rail and airport hubs, assuming national average emissions may lead to large uncertainty in the transport emissions reported here. By working with other agencies both in the region and nationally level 1 datasets may be obtained. By establishing such links and maintaining the demand for this data, future emissions inventories may be performed enabling reliable year-on-year energy based emissions to be compiled for the Frankfurt area in future years.

Industrial Processes

Industrial process emissions include the GHG emissions that are released from non-combustion chemical reactions at certain industrial sites, in addition they include emissions that are released during the maintenance of products such as air conditioning units. This is the only sector in a GHG emissions inventory that includes all six Kyoto GHGs.

In the case of this region the emissions are 4987 kt CO$_2$e. The breakdown is presented in Frankfurt Chart 2, and is comprised of 19% from mineral products, 28% from the chemical industry, 43% from metal production, 10% from the consumption of halocarbons and SF$_6$. This sector is largely a reflection of the nature and extent of the industry within the region. The data shows that Frankfurt has a range of industrial sites that are responsible for these emissions. In terms of this sector, level 1 methods were only used to estimate 100% consumption and production of halocarbons and SF$_6$.

The industrial sites responsible for these emissions are nearly always subject to monitoring requirements and it requires a relationship to be set-up with the regulatory body that monitors the large industrial units in the region. This has yet to be done in Frankfurt. This relationship can be built up to enable future versions of the emissions inventory to be populated with more level 1 data.

Agriculture

Agricultural emissions include CH$_4$ and N$_2$O, they are primarily associ-
ated with farmed animals and the use of organic and inorganic fertilizers. There are additional emissions associated with the combustion of agricultural produce on fields.

The inventory shows that 1614 kt CO₂e were emitted from the agricultural sector within the region in 2005. Frankfurt Chart 3 shows the total is made up of 43% from enteric fermentation, 11% from manure management and 47% from agricultural soils. These emissions have been estimated using level 1 approaches for 100% of the emissions from enteric fermentation and manure management, but 0% of the emissions from agricultural soils.

Waste

Waste emissions include CO₂, CH₄, and N₂O. The emissions are mostly associated with the degradation of putrescible waste deposited to landfill sites, the amount of wastewater, whether it is domestic or industrial, and with the incineration of waste. The levels of emissions are reflected by the amount of waste that is deposited to landfill sites, the management of the site, the amount that is recycled and the amount of waste that is incinerated.

The inventory shows that 610 kt CO₂e were emitted from the waste sector in 2005. As shown in Frankfurt Chart 4 the total is made up of 77% from managed waste disposal, 19% from waste water and 4% from incineration.

The reasons for these emissions are due to the Country’s propensity to landfill its waste rather than to recycle or incinerate it, as this data has been based on national averages rather than locally collected data. The emissions have been estimated using level 3 methods for 100% of the emissions from managed waste disposal and incineration, and level 2 methods have been used to estimate waste water. With more locally collected information there is clear room for improvement in future inventories.
The emissions for the whole of the Frankfurt / Rhain Main Region are displayed in Frankfurt Chart 5 above, the inset shows the percentage of GRIP levels that have been used to estimate the emissions. These emissions represent the sum of the emissions presented on the previous two pages. The emissions for Germany are displayed in Frankfurt Chart 6 above. This shows the relative difference in the emissions in the region to that displayed nationally.

The region has a slightly higher share of energy emissions to that displayed nationally and a lower share of agricultural emissions, industrial process and waste emissions are broadly in line. The emissions per-capita of the region are 13.7tCO$_2$e compared to 12.2tCO$_2$e in Germany. This can be explained by the higher share of industry within Frankfurt to that displayed in wider Germany. This is because the majority of the emissions estimations have been performed using GRIP level 2 which largely aggregates emissions on the basis of economic activity. The two regions with a similar per-capita emissions are Stuttgart and Bologna. The emissions per-capita are above the average of the regions and are also above the European average. They are similar in size to the emissions per capita of Norway, Holland and Belgium. Although this needs to be considered in terms of the level of the methodology used, which in this case is largely level 2 and level 3 methods. Furthermore, the emissions are effected by the type of electricity generation in Germany that is more carbon intensive then those of other countries.

The table below displays the emissions for the whole of Frankfurt/Rhain Main on a sector-by-sector basis and the main sub-sectors of the energy sector. The results are displayed in terms of each of the six Kyoto greenhouse gases. The table shows the relative contributions that each gas makes from each source, with the CO$_2$e amount displayed also. This table clearly shows that CO$_2$ emissions from the energy sector dominate the emissions from this region. These account for 92% of CO$_2$ emissions and 85% of CO$_2$e emissions. This is a common feature to all the emissions inventories presented in this brochure. It is this data and the activity data underpinning it that drives the GRIP Scenario Tool, which is the platform of the GRIP Scenario process. It is this process that enables regions to form scenarios of how they can reduce their energy emissions within their region. This can then be used to form preferred strategies on how the region may develop. These are the next step of the EU CO2 project, and are explained in more detail at the end of this document.

The table below and Frankfurt Chart 5 above show that the energy sector is responsible for 86% emissions, Industrial Processes for 10%, Waste for 1% and Agriculture for 3% of emissions. This shows the clear need to focus on the energy system needed for Frankfurt to be a low-carbon region of the future.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Energy</th>
<th>Industrial Processes</th>
<th>Waste</th>
<th>Agriculture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kt CO$_2$</td>
<td>kt CH$_4$</td>
<td>kt N$_2$O</td>
<td>kt HFC</td>
</tr>
<tr>
<td>Energy - Total</td>
<td>43900.81</td>
<td>6.64</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>12284.16</td>
<td>1.59</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Services</td>
<td>7211.98</td>
<td>0.23</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>Industry</td>
<td>11892.61</td>
<td>0.37</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Energy Industry</td>
<td>754.24</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>10568.85</td>
<td>0.54</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Fugitive</td>
<td>1188.97</td>
<td>3.89</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Industrial Processes</td>
<td>3683.92</td>
<td>0.01</td>
<td>2.20</td>
<td>405.33</td>
</tr>
<tr>
<td>Waste</td>
<td>0.00</td>
<td>23.93</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>40.80</td>
<td>2.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47584.73</td>
<td>71.38</td>
<td>6.15</td>
<td>405.33</td>
</tr>
</tbody>
</table>
GLASGOW Region covers an area of 3,405 sq km - in Scotland, UK, and includes the City of Glasgow. It contains 0.79m households, just under half of which are located in the Glasgow City area. The population of the region in the year 2004 stood at 1.75m and it is one the most densely-populated regions in Scotland.

The Gross Domestic Product (GDP) of the region in 2004 was valued at £29.3Bn. This relatively low level of economic activity equated to GDP per capita of £16,791, below the UK average of £17,344.

The level of economic activity of Glasgow and the Clyde Valley (GCV) is heavily dominated by the Glasgow City area. The economy within Glasgow has changed greatly over recent years, from one that was dominated by ship building and imports to one that is dominated by the service industry. Elsewhere within the region there continues to be a contingent of heavy and polluting activity. The region also contains a large amount of coal mining. In 2004, the region accounted for 32% of Scotland’s manufacturing output.

The region has an agricultural industry holding approximately 2% of the UK’s animal population in 2004. The impact of events such as BSE and Foot and Mouth have led to changing farming practices in recent years, and these changes have had a subsequent effect on releases of methane (CH\textsubscript{4}) and nitrous oxide (N\textsubscript{2}O) from the agricultural sector.

The region has one airport, Glasgow International. It is the largest and busiest airport in Scotland, handling 8.5m passengers in 2004. Glasgow Prestwick Airport despite its name is located just outside the region it is much smaller than the international, but handles 2.2m passengers. It has experienced enormous expansion (from 0.7m passengers in 1999) and is expected to increase further with the activity of budget airlines.

The main railway line departing from the region is electrified, which presents less direct emissions than a non-electrified route. Despite the line being electrified, a small number of diesel trains continue to use the routes. On a smaller scale, there is the Glasgow City underground system. The road network joins up areas of habitation in the region. In 2004, approximately 593,500 cars were registered in the region.

Emissions from Glasgow

The energy sector, including transport and fugitive emissions, accounts for 99.9% of regional CO\textsubscript{2} emissions (12,827kt CO\textsubscript{2}), with CH\textsubscript{4} and N\textsubscript{2}O emissions adding an additional 937kt CO\textsubscript{2}Eqv, making a total of 13,772kt CO\textsubscript{2}Eqv for the year 2004.

The Chart below shows the breakdown of GCV GHG emissions, from the energy sector in the year 2004.

Households in the Glasgow region consume a slightly higher than average amount of energy due, possibly, to the weather and the level of insulation in homes among other factors. Domestic emissions per household are 5.93t CO\textsubscript{2}, and per person are 2.67t CO\textsubscript{2}.

Additional emissions reported within the energy sector include 1,346kt CO\textsubscript{2}Eqv from the energy consumed by the commercial, public administration and agricultural sectors and 2,542 ktCO\textsubscript{2} from the GCV region’s industrial sector. Total Fugitive emissions from other energy sources in the GCV region for 2004 were estimated to be 1,210kt CO\textsubscript{2}Eqv.

These figurative sources include Methane released from the gas distribution network, electricity losses from the grid and Methane leakage from coal mining.

The inventory shows that within the transport sector, road transport accounts for the largest proportion of emissions in the GCV with 3,395kt CO\textsubscript{2} in 2004 cars. The GCV emissions...
from transport sources accounted for 2.7% of total road transport emissions within the UK. This is higher then its population would indicate. Waste disposal in GCV emitted 559 ktCO$_2$Eqv and emissions from agriculture were estimated at 721 kt CO$_2$Eqv. There are no industries in the GVC regions which emit 'process emissions'.

Overall the emissions for the GCV region are estimated at 8.8 tCO$_2$Eqv per person, and 0.36 ktCO$_2$Eqv per unit of GVA.
Hamburg is Germany's second largest city, as well as a “Land” (State) of the Federal Republic. It is situated on the North German Plain, at the head of the Elbe estuary, around 100 km from the river’s North Sea mouth. With 1.75 million inhabitants, Hamburg is number 10 among the European metropolises, covering an area of 755 km².

The Hamburg Metropolitan Region, with its 4.3 million inhabitants, encompasses 14 districts of the neighbouring Federal States Schleswig-Holstein and Lower Saxony (Niedersachsen) and covers an area of 19,802 km². The region has a maritime climate with mild winters and an annual average air temperature of 9.3 °C. Its GDP per capita is 32,440 €, per household 64,000 €.

Trading and transport services have a long tradition in Hamburg, reflecting the more than 800-year history of its port, which today is the second largest in Europe. These activities have been complemented in more recent times by the growth of business services. The German unification gave back the natural „Hinterland“ to Hamburg and boosted its function as a regional capital. The Hamburg Metropolitan Region has a legacy as Northern Europe’s main transshipment centre for goods of all kinds, as key gateway for the overseas trade of the Baltic states and as a logistics hub for Eastern Europe.

The Hamburg Metropolitan Region is the world’s third largest aviation industry centre, with 20,000 employees and 400 subcontracting firms in the surrounding districts. South of the river Elbe you find Europe’s largest cohesive industrial area, with refineries, metal works and petrochemical works and the second largest copper plant in Europe – in direct neighbourship to Europe’s biggest fruit-growing area. Agriculture is the dominating activity in most of the peripheral districts of the Hamburg Metropolitan Region, but in subcentres like Stade, Lüneburg and Elmshorn, small and middle sized logistics and technology enterprises contribute to the welfare of the region.

The Hamburg Metropolitan Region is home to large publishing houses of tradition, creative advertising, game producers, a stronghold of the movie industry and centre of high-quality televised information and entertainment, making it one of Europe’s leading media centres with more than 100,000 people working in this sector. An additional strength of the regional economy is medical and mechanical engineering. The region is also an important location for the renewable energy industry, both in headquarters and in installations.

The region’s public transport is one of the closest-knit in the world, with an integrated ticket system for the whole Hamburg Metropolitan Region. In the city itself, 98% of the population live closer than 300 meters to the next public transport station.

Hamburg is a city endowed with many green spaces and parks, even in the densely populated inner-city districts. Air pollution has been reduced by 50 percent, mainly by means of emissions-reducing upgrades of power stations and industrial combustion plants as well as the expansion of the district heating system that now services 45% of the households. Cleaner air has also improved the health of the city’s trees, which number an estimated 2 million.
Emissions from the Energy Sector

Greenhouse gas emissions from the combustion, distribution, transformation and extraction of energy are of three types: carbon dioxide (CO_2), methane (CH_4) and nitrous oxide (N_2O). The levels of emissions vary depending on the manner in which energy is combusted/distributed/transformed/extracted, as well as the type of energy source (gas, solid, liquid, electricity etc).

The size of the emissions released from a region is determined by the type of energy combusted/distributed/transformed/extracted and extracted within it as well as how and where the electricity it consumes is produced. In this summary we present the overall data by sector, there are, depending on the levels potentially in excess of 1000 variables underpinning these figures. These are all available separately from the author.

The emissions from the energy sector in the Hamburg area in 2005 was 33959 kt CO_2e. Hamburg Chart 1, on the opposite page presents the emissions associated with energy from the region. It shows the relative size of the main components of the energy sectors emissions in terms of CO_2e. It shows that, in Hamburg the emissions from the residential sector accounted for 18% of energy emissions, the service sector made up 20% of CO_2e emissions, the industrial sector 19% and the transport sector 33%. The energy industry of Hamburg represented 5% of emissions and finally fugitive emissions account for 5%. This mix reflects the economic activity of the region and the transport infrastructure of the region. Underpinning all of these figures are sector specific amounts of energy consumed / combusted and their associated emissions, all considered in terms of the GRIP level used to estimate them.

In GRIP there are three different methodological levels associated with each emissions source, depending on the data available to carry out the emissions calculations. The use of GRIP level 1 methodology requires information collected locally on, in this case, energy consumption by type from different sectors, and is the level with which the highest confidence can be attached to the emissions reported. The insert in Hamburg Chart 1 shows the GRIP levels used for each sub-sector as a percentage, for estimating the emissions from each sub-sector. This insert shows that level 1 methods were used to estimate 100% of the residential sector, industrial sector, transport sector, energy industry and fugitive emissions and 90% of service sector emissions. This means that nearly all the data entered by the team in Hamburg was sourced from local measured data sets. This will enable year-on-year energy based emissions to be compiled for the Hamburg area in future years.

Industrial Processes

Industrial process emissions include the GHG emissions that are released from non-combustion chemical reactions at certain industrial sites, in addition they include emissions that are released during the maintenance of products such as air conditioning units. This is the only sector in a GHG emissions inventory that includes all six Kyoto GHGs.

In the case of this region the emissions are 2817 kt CO_2e. The breakdown is presented in Hamburg Chart 2, and is comprised of 14% from the chemical industry, 66% from metal production and 20% from the consumption of halocarbons and SF_6. This sector is largely a reflection of the nature and extent of the industry within the region. The data shows that Hamburg has a large metal production industry that is responsible for emissions. In terms of this sector, level 2 methods were used to estimate 100% of the emissions from the chemical industry and metal production and level 1 methods were used for 100% of the emissions from the consumption of halocarbons and SF_6.

The industrial sites responsible for these emissions are nearly always subject to monitoring requirements and it requires a relationship to be set-up with the regulatory body that monitors the large industrial units in the region. This is yet to be done here. This relationship can be built to enable future versions of the emissions inventory to be populated with more level 1 data.
Agriculture

Agricultural emissions include CH\textsubscript{4}, N\textsubscript{2}O, and N\textsubscript{2}O. They are primarily associated with farmed animals and the use of organic and inorganic fertilizers. There are additional emissions associated with the combustion of agricultural produce on fields.

The inventory shows that 4.463 kt CO\textsubscript{2}e were emitted from the agricultural sector within the region in 2005. Hamburg Chart 3 shows the total is made up of 34% from enteric fermentation, 10% from manure management and 56% from agricultural soils – reflecting the large fruit growing areas in the region. These emissions have been estimated using level 1 approaches for 100% of the emissions from enteric fermentation, manure management and other sources, level 2 methods were used to estimate the emissions from agricultural soils.

Waste

Waste emissions include CO\textsubscript{2}, CH\textsubscript{4}, and N\textsubscript{2}O. The emissions are mostly associated with the degradation of putrescible waste deposited to landfill sites, the amount of wastewater, whether it is domestic or industrial, and with the incineration of waste. The levels of emissions are reflected by the amount of waste that is deposited to landfill sites, the management of the site, the amount that is recycled and the amount of waste that is incinerated.

The inventory shows that 284 kt CO\textsubscript{2}e were emitted from the waste sector in 2005. As shown in Hamburg Chart 4 the total is made up of 55% from managed waste disposal and 45% from waste water.

These emissions are low overall, and this is due to the region’s propensity to burn its waste for electricity production (these emissions are considered under energy). Furthermore, the region has relatively higher recycling rates which reduce its emissions from the waste sector. The remaining emissions are due to the remaining waste that is landfilled. The emissions have been estimated using level 1 methods for 100% of the emissions from managed waste disposal and waste water.
The emissions for the whole of the Hamburg Metropolitan Region are displayed in Hamburg Chart 5 above, the inset shows the percentage of GRIP levels that have been used to estimate the emissions. These emissions represent the sum of the emissions presented on the previous two pages. The emissions for Germany are displayed in Hamburg Chart 6 above. This shows the relative difference in the emissions in the region to that displayed nationally. The region has the same share of energy emissions to that displayed nationally, a lower share of Industrial process and waste emissions and a higher share of Agricultural emissions. The emissions per-capita of the region are 9.75 t CO₂e compared to 12.2 t CO₂e in Germany. This can be explained by the nature of the economy within Hamburg to that displayed in wider Germany. Regions with a similar per-capita emissions include Turin, Veneto and Ljubljana. The emissions per-capita are above the average of the regions and are also above the European average. They are similar in size to the emissions per capita of Italy, France, Spain and Portugal. The data has been largely compiled using measured data and is therefore dependent on those datasets. Furthermore, the emissions are effected by the type of electricity generation in Germany that is more carbon intensive than those of other countries.

The table below displays the emissions for the whole of Hamburg Metropolitan Region on a sector-by-sector basis and the main sub-sectors of the energy sector. The results are displayed in terms of each of the six Kyoto greenhouse gases. The table shows the relative contributions that each gas makes from each source, with the CO₂e amount displayed also. This table clearly shows that CO₂ emissions from the energy sector dominate the emissions from this region. These account for 94% of CO₂ emissions and 79% of CO₂e emissions. Whilst this is a lower share than other regions. The dominance of CO₂ emissions from the energy sector is a common feature to all the emissions inventories presented in this brochure. It is this data and the activity data underpinning it that drives the GRIP Scenario Tool, which is the platform of the GRIP Scenario process. It is this process that enables regions to form scenarios of how they can reduce their energy emissions within their region. This can then be used to form preferred strategies on how the region may develop. These are the next step of the EUCO project, and are explained in more detail at the end of this document.

The table below and Hamburg Chart 5 above show that the energy sector is responsible for 82% emissions, Industrial Processes for 7%, Waste for less than 1% and Agriculture for 11% of emissions. This shows the clear need to focus on the energy system needed for Hamburg to be a low-carbon region of the future.

<table>
<thead>
<tr>
<th>Sector</th>
<th>kt CO₂</th>
<th>kt CH₄</th>
<th>kt N₂O</th>
<th>HFC</th>
<th>PFC</th>
<th>kt SF₆</th>
<th>kt CO₂e - GWP100</th>
<th>kt CO₂e - GWP100</th>
<th>GRIP % Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy - Total</td>
<td>32911.63</td>
<td>36.28</td>
<td>0.92</td>
<td>6038.51</td>
<td>6656.90</td>
<td>6272.84</td>
<td>33959.64</td>
<td>6082.51</td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>6034.42</td>
<td>0.11</td>
<td>0.15</td>
<td>6082.51</td>
<td>6656.90</td>
<td>6272.84</td>
<td>33959.64</td>
<td>6082.51</td>
<td></td>
</tr>
<tr>
<td>Services</td>
<td>6604.32</td>
<td>0.33</td>
<td>0.15</td>
<td>6082.51</td>
<td>6656.90</td>
<td>6272.84</td>
<td>33959.64</td>
<td>6082.51</td>
<td></td>
</tr>
<tr>
<td>Industry</td>
<td>6211.07</td>
<td>0.16</td>
<td>0.19</td>
<td>6082.51</td>
<td>6656.90</td>
<td>6272.84</td>
<td>33959.64</td>
<td>6082.51</td>
<td></td>
</tr>
<tr>
<td>Energy Industry</td>
<td>1808.70</td>
<td>0.03</td>
<td>0.03</td>
<td>1816.44</td>
<td>11395.55</td>
<td>1771.40</td>
<td>2816.59</td>
<td>284.16</td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>11236.45</td>
<td>0.38</td>
<td>0.37</td>
<td>11395.55</td>
<td>1771.40</td>
<td>2816.59</td>
<td>4462.95</td>
<td>4462.95</td>
<td></td>
</tr>
<tr>
<td>Fugitive</td>
<td>1019.66</td>
<td>35.27</td>
<td>0.04</td>
<td>1771.40</td>
<td>2816.59</td>
<td>284.16</td>
<td>4462.95</td>
<td>4462.95</td>
<td></td>
</tr>
<tr>
<td>Industrial Processes</td>
<td>2218.70</td>
<td>0.00</td>
<td>0.01</td>
<td>456.99</td>
<td>21.09</td>
<td>0.00</td>
<td>2816.59</td>
<td>284.16</td>
<td></td>
</tr>
<tr>
<td>Waste</td>
<td>0.00</td>
<td>7.76</td>
<td>0.39</td>
<td>284.16</td>
<td>4462.95</td>
<td>4462.95</td>
<td>4462.95</td>
<td>4462.95</td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>92.64</td>
<td>8.12</td>
<td>9.44</td>
<td>456.99</td>
<td>21.09</td>
<td>0.00</td>
<td>41523.34</td>
<td>41523.34</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35130.32</td>
<td>136.69</td>
<td>9.44</td>
<td>456.99</td>
<td>21.09</td>
<td>0.00</td>
<td>41523.34</td>
<td>41523.34</td>
<td></td>
</tr>
</tbody>
</table>
Helsinki Metropolitan Area is located in the southern part of Finland on the coast of the Baltic Sea. The region covers 766 square kilometres, which represents 0.2 percent of Finland’s total area. The population density is the highest in the country and, with 1330 inhabitants per square kilometre, is almost eighty times higher than the country’s average. The moderate weather of Helsinki is influenced by both maritime and continental climate patterns. The annual mean temperature has been varying between 6 and 7 degrees in the past years, being around 5 °C in the 1950s.

The area comprises of Helsinki, the capital of the country, along with its neighbouring cities Espoo, Vantaa and Kauniainen. It had 988 500 inhabitants in December 2005 with an average annual growth rate of just under one per cent in the 21st century. Total increase in population by 2005 compared to 1990 has been 166 000. Demographically typical feature is high percentage of working population between 20 and 40 years of age, which makes the age distribution appear younger than in the rest of Finland.

Helsinki was founded in 1550 by the king Gustav I of Sweden. For a long time it remained a small coastal town but began to develop into a major city in the 19th century. Since then, traffic connections have been greatly extended, turning the region into a “Gateway to East”. The railway from Helsinki to St. Petersburg was completed already in 1870.

Helsinki Metropolitan Area is the largest urbanized area in Finland and the centre for economy, culture and science. It has eight of Finland’s twenty universities, the majority of the corporate headquarters and an international airport and harbours. The unemployment rate was 8.1 per cent in 2005 whereas the national figure was 11.1. The region is also richest in Finland in terms of Gross Domestic Product. In 2005 GDP per capita was roughly 40 000 euros compared to 30 000 for the whole of Finland.

The number of cars registered is somewhat lower (0.4 per citizen) than in the rest of the country (0.5). There is an integrated public transportation system with commuter trains, trams, buses and the underground. Pedestrian zones in the city centres are however fairly small and car traffic has been on the increase. The situation with cycling has improved greatly over the last decade. There are more than 2 500 kilometres of bicycle lanes in the Helsinki Metropolitan Area.

The number of households in the region was 512 000 in 2005. The average living area per capita was 34 m². Approximately half of the houses are owner-occupied and half are rented. Almost eighty per cent are heated by district heating. A few large CHP power plants produce electricity and heat using natural gas and lignite as main fuels.
The previous page contains an overview of the Helsinki Metropolitan Region. This background offers a useful insight into the nature and type of emissions that we expect to see in the region. The overview tells us that Helsinki has a comparatively higher amount of people working in the service sector than that displayed nationally. The energy that it consumes is mostly fossil based, although it is used in a more efficient manner. As a consequence, despite their relatively low annual average temperatures, their emissions are lower than other regions.

We present the inventory for the Helsinki Metropolitan Region below. This is displayed by sector: firstly the emissions from the combustion, distribution, transformation and extraction of energy (Helsinki Chart 1); secondly the emissions from industrial processes (Helsinki Chart 2); thirdly the emissions from agriculture (Helsinki Chart 3) and finally in terms of the emissions from waste (Helsinki Chart 4). We then present total GHG emissions from the region and the breakdown of emissions from the whole of Finland (Helsinki Charts 5 and 6).

Emissions from the Energy Sector

Greenhouse gas emissions from the combustion, distribution, transformation and extraction of energy are of three types: carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O). The levels of emissions vary depending on the manner in which energy is combusted/distributed/transformed/extracted, as well as the type of energy source (gas, solid, liquid, electricity etc).

The size of the emissions released from a region is determined by the type of energy combusted/distributed/transformed/extracted and extracted within it as well as how and where the electricity it consumes is produced. In this summary we present the overall data by sector, there are, depending on the levels potentially in excess of 1000 variables underpinning these figures. These are all available separately from the author.

The total emissions from the energy sector in Helsinki Metropolitan area in 2005 was 6,703 kt CO₂. Helsinki Chart 1, on the opposite page presents the breakdown of the source of the emissions associated with energy from the region. It shows the relative size of the main components of the energy sectors emissions in terms of CO₂. It shows that the emissions from the residential sector made up 37% of CO₂ emissions, the service sector 32%, the industrial sector 9% and the transport sector 22%. There are no oil refineries or solid fuel transformation plants in the region and therefore there are no emissions from these sources. Finally, fugitive emissions account for 0.04% total energy emissions. This mix can be explained due to the high economic share of the service sector in the region compared to that displayed nationally, the somewhat higher population density of the region, the established transport links and a high amount of both CHP and heat networks in the region – which are more efficient and result in lower losses (fugitive emissions). Underpinning all of these figures are sector specific amounts of energy consumed / combusted and their associated emissions, all considered in terms of the GRIP level used to estimate them.

In GRIP there are three different methodological levels associated with each emissions source, depending on the data available to carry out the emissions calculations. The use of GRIP level 1 methodology requires information collected locally on, in this case, energy consumption by type from different sectors, and is the level with which the highest confidence can be attached to the emissions reported. The insert in Helsinki Chart 1 shows the GRIP levels used to estimate the emissions from each sub-sector as a percentage of those emissions estimated. This insert shows that level 1 methods were used to estimate 100% of the emissions from the domestic sector, 100% of the service sector, 100% of the industrial sector, 100% of the transport sector, 100% of the energy industry and 100% of the fugitive emissions. This means that all the data entered by the team in Helsinki was taken from local measured data sets and therefore that the inventory has been produced using the highest quality level available data. This shows a clear potential for additional emissions inventories to be compiled for years prior to 2005. Furthermore, by maintaining the demand for this data, future emissions inventories may be performed enabling reliable year-on-year energy based emissions to be compiled for the Helsinki area in future years.

Industrial Processes

Industrial process emissions include the GHG emissions that are released from non-combustion chemical reactions at certain industrial sites, in addition they include emissions that are released during the maintenance of certain products such as air conditioning units. This is the only sector in a GHG emissions inventory that includes all six Kyoto GHGs.

In the case of this region the emissions are 168 kt CO₂. This is presented in Helsinki chart 2, and is comprised entirely of the consumption of halocarbons and SF₆. The data reflects the fact that Helsinki does not have any other types of industrial sites responsible for other emissions. In terms of this sector, level 1 methods using local data were used to estimate 100% of mineral products emissions, 100% of chemical industry emissions, 100% of metal production emissions, 100% of production of halocarbons and SF₆ and 100% of the emissions from the consumption of halocarbons and SF₆. The emissions here are less reliable if they have not been estimated using level 1 approaches. In Helsinki’s case links have been made with local regulatory bodies and industry and have established that no sites of the type relevant to this sector are in existence.
Agriculture

Agricultural emissions include CH$_4$ and N$_2$O, they are primarily associated with farm yard animals and the use of organic and inorganic fertilizers. There are additional emissions associated with the combustion of agricultural produce on fields.

The inventory, illustrated in Helsinki Chart 3 shows that 28 kt CO$_2$e were emitted from the agricultural sector within the region in 2005. This total is comprised of 2% from enteric fermentation, 0% from manure management, 98% from agricultural soils and, 0% from other sources. These emissions have been estimated using level 1 approaches for 100% of the emissions from enteric fermentation, 100% from manure management, 0% from agricultural soils and, 100% of the emissions from other sources.

Waste

Waste emissions include CO$_2$, CH$_4$, and N$_2$O. The emissions are mostly associated with the degradation of putrescible waste deposited to landfill sites, the amount of wastewater, whether it is domestic or industrial, and the amount of waste which is incinerated. The size of emissions reflect the volume of waste that is deposited to landfill sites, the management of the site, the amount that is recycled and the amount of waste that is incinerated.

Helsinki Chart 4 shows that 42 kt CO$_2$e were emitted from the waste sector in 2005. In the case of the region this was comprised of 55% from managed waste disposal, 0% from unmanaged waste disposal, 18% from waste water and 27% from other sources, which in this case are from compost.

The emissions have been estimated using level 1 methods in 100% from managed waste disposal, 100% unmanaged waste disposal, 100% waste water and 100% incineration. This provides us with a high degree of confidence in the emissions estimations for this sector in the region.
THE emissions for the whole of the Helsinki Region are displayed in Helsinki Chart 5 above, the inset shows the percentage of GRIP levels that have been used to estimate the emissions. These emissions represent the sum of the emissions presented on the previous two pages. The emissions for Finland are displayed in Helsinki Chart 6 above. This shows the relative difference in the emissions in the region to that displayed nationally. The region has a higher share of energy emissions to that displayed nationally, a lower share of Industrial process and Agricultural emissions and a similar share of Waste emissions. The emissions per capita of the region are 7 t CO\textsubscript{2}e compared to 13.1 t CO\textsubscript{2}e in Finland. This can be explained by the type of fuel combusted in Helsinki, its transport system and its service sector base. Regions with a similar per-capita emissions include Porto, Madrid and Brussels. The emissions per-capita are below the average of the regions and are also below the European average. They are similar in size to the emissions per capita of Sweden. The data has been largely compiled using measured data and is therefore dependent on those datasets. Furthermore, the emissions are effected by the type of electricity generation in Finland that is less carbon intensive than those of other countries.

The table below displays the emissions for the whole of Helsinki Region on a sector-by-sector basis and the main sub-sectors of the energy sector. The results are displayed in terms of each of the six Kyoto greenhouse gases. The table shows the relative contributions that each gas makes from each source, with the CO\textsubscript{2}e amount displayed also. This table clearly shows that CO\textsubscript{2} emissions from the energy sector dominate the emissions from this region. These account for 100% of CO\textsubscript{2} emissions and 95% of CO\textsubscript{2}e emissions. The dominance of CO\textsubscript{2} emissions from the energy sector is a common feature to all the emissions inventories presented in this brochure. It is this data and the activity data underpinning it that drives the GRIP Scenario Tool, which is the platform of the GRIP Scenario process. It is this process that enables regions to form scenarios of how they can reduce their energy emissions within their region. This can then be used to form preferred strategies on how the region may develop. These are the next step of the EU CO2 project, and are explained in more detail at the end of this document.

The table below and Helsinki Chart 5 above show that the energy sector is responsible for 97% emissions, Industrial Processes for 2%, Waste for 1% and Agriculture under 1% of emissions. This shows the clear need to focus on the energy system needed for Helsinki to be a low-carbon region of the future.

<table>
<thead>
<tr>
<th>Sector</th>
<th>kt CO\textsubscript{2}</th>
<th>kt CH\textsubscript{4}</th>
<th>kt N\textsubscript{2}O</th>
<th>CO\textsubscript{2}-GWP100</th>
<th>HFC</th>
<th>PFC</th>
<th>kt SF\textsubscript{6}</th>
<th>CO\textsubscript{2}-GWP100</th>
<th>GRIP % Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy - Total</td>
<td>6594.38</td>
<td>0.59</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6703.56</td>
<td>Green</td>
</tr>
<tr>
<td>Residential</td>
<td>2476.29</td>
<td>0.29</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2498.17</td>
<td>Green</td>
</tr>
<tr>
<td>Services</td>
<td>2146.22</td>
<td>0.08</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2161.18</td>
<td>Green</td>
</tr>
<tr>
<td>Industry</td>
<td>558.14</td>
<td>0.02</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>562.08</td>
<td>Green</td>
</tr>
<tr>
<td>Energy Industry</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>White</td>
</tr>
<tr>
<td>Transport</td>
<td>1411.17</td>
<td>0.19</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1479.29</td>
<td>Green</td>
</tr>
<tr>
<td>Fugitive</td>
<td>2.55</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.83</td>
<td>Red</td>
</tr>
<tr>
<td>Industrial Processes</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>162.45</td>
<td>1.86</td>
<td>0.00</td>
<td></td>
<td>168.35</td>
<td>Green</td>
</tr>
<tr>
<td>Waste</td>
<td>0.00</td>
<td>1.78</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41.72</td>
<td>Green</td>
</tr>
<tr>
<td>Agriculture</td>
<td>0.00</td>
<td>0.02</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.31</td>
<td>Green</td>
</tr>
<tr>
<td>Total</td>
<td>6594.38</td>
<td>2.39</td>
<td>0.41</td>
<td>162.45</td>
<td>1.86</td>
<td>0.00</td>
<td></td>
<td>6940.94</td>
<td>Green</td>
</tr>
</tbody>
</table>
THE Community (Region) of Madrid is a single province of 8,028 square kilometres and includes the capital of the country. It has three distinct areas: the metropolitan area, which crosses nearly the whole region from northeast to southwest, including heavily dense industrial areas, residential areas and also a large number of commercial spots; the Sierra (mountains) in the north, a highly protected natural area; and the Campiña, a basically agricultural area, in the south. 84% of the land lies at an altitude of over 600 metres, giving rise to a dry, continental climate with major variations in seasonal temperatures. Nowadays we can speak about a larger connection of the metropolitan area with the surrounding regions, Guadalajara and Toledo of Castilla la Mancha, and Segovia of Castilla Leon.

The average annual population growth is mainly due to the natural increase, combined with an increasing net migration. The drop in the fertility rate, which is now amongst the lowest in the EU, and the unknown illegal immigration, meant small rises in numbers and the relative ageing of the population in the beginning of the 1990’s. So we reached the lowest increase rate in the middle of the 90’s. Since 2004, when the immigration was legalised, the total population increased significantly. In 2006, 13.22% of the resident had a foreign nationality. In the medium term, there will be a geographical redistribution of the population rather than any significant increases.

If we take a look to the demographic structure we observe also a progressive increase of the ageing, as in most European countries.

The pressure on today’s labour market, a consequence of the ‘baby boom’ of the 1960s, will be reduced; in fact, there is already a spectacular decline in the numbers of children of pre-school age. This phenomenon was compensated, as mentioned, through the incorporation of the immigrants as cheap handworker, attracted by the economical boom special due to the explosive increase of the building sector.

Another indicator is density. 93% of the region’s population is concentrated on only 24% of its surface area. This fact, which is common to all the capital regions in Europe, is particularly striking in Madrid, where the fall-off in population density is very pronounced.

The Madrid region is also attractive as the administrative centre of Spain, even if decentralisation, the consequence of the new autonomic state structure, allows a progressive dispersal of functions. The imbalances affect the sitting of businesses in relation to residential areas, which leads to a great deal of commuting. The specialization in the services sector of the so-called ‘central core’ has led to 45% of all jobs being concentrated in this area, the figure rising to 75% for financial services and 60% for public administration. So we can note that the GDP per inhabitant is the highest in Spain.
The previous page contains an overview of the Madrid Region. This background offers a useful insight into the sources and size of GhG emissions that we expect to see in the region. The overview tells us that Madrid has a far higher proportion of people employed in both the service sector and public sectors than the wider Spanish average, and is densely populated. The energy that it consumes is mostly fossil based.

We present the inventory for the Madrid Region below. This is displayed by sector: firstly we present the emissions from the combustion, distribution, transformation and extraction of energy (Madrid Chart 1); secondly the emissions from industrial processes (Madrid Chart 2); thirdly the emissions from agriculture (Madrid Chart 3) and finally in terms of the emissions from waste (Madrid Chart 4). We then present total GhG emissions from the region and also the breakdown of national emissions (Charts 5 and 6).

Emissions from the Energy Sector

Greenhouse gas emissions from the combustion, distribution, transformation and extraction of energy are of three types: carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O). The levels of emissions vary depending on the manner in which energy is combusted/distributed/transformed/extracted, as well as the type of energy source (gas, solid, liquid, electricity etc).

The size of emissions released from a region is determined by the type of energy combusted/distributed/transformed and extracted within it as well as how and where the electricity it consumes is produced. In this summary we present the overall data by sector, there are, depending on the levels potentially in excess of 1000 variables underpinning these figures. These are all available separately from the author.

The emissions from the energy sector in the Madrid area in 2005 was 36245 kt CO₂e. Madrid Chart 1, on the opposite page presents the emissions associated with energy from the region from different sectors. It shows that in Madrid the emissions from the residential sector accounted for 24% of energy emissions, the service sector made up 19% of CO₂e emissions, the industrial sector 24% and the transport sector 28%. The energy industry comprised 0%, as there are no petroleum refineries or solid fuel transformation plant etc in the region. Finally, fugitive emissions account for 5% of energy sector emissions. This mix may be explained due to the high population density in the Madrid Region. Underpinning all of these figures are sector specific amounts of energy consumed / combusted and their associated emissions, all considered in terms of the GRIP level used to estimate them.

In GRIP there are three different methodological levels associated with each emissions source, depending on the data available to carry out the emissions calculations. The use of GRIP level 1 methodology requires information collected locally on, in this case, energy consumption by type from different sectors, and is the level with which the highest confidence can be attached to the emissions reported. The insert in Madrid Chart 1 shows the GRIP levels used for each sub-sector as a percentage of the emissions from that sub-sector. This insert shows that level 1 methods were used to estimate 100% of the emissions in the residential sector, 100% of the service sector, 64% of the industrial sector, 100% of the transport sector, 100% of the energy industry and, 100% of the fugitive emissions. This means that a large part of the data entered by the team in Madrid was sourced from locally measured data sets. There is potential for improvement in future emissions inventories from the service and industry sectors. By establishing and maintaining the demand for this data future emissions inventories like this one will be made possible. This will encourage organizations that hold it to collate and provide it. This will enable year-on-year energy based emissions to be compiled for the Madrid area in future years.

Industrial Processes

Industrial process emissions include the GhG emissions that are released from non-combustion chemical reactions at certain industrial sites, in addition they include emissions that are released during the maintenance of products such as air conditioning units. This is the only sector in a GhG emissions inventory that includes all six Kyoto GhGs.

In the case of this region the emissions are 2 228 kt CO₂e. This is presented in Madrid Chart 2, and is comprised of 65% from mineral products, 7% metal production and 28% consumption of halocarbons and SF₆. This sector is usually a reflection of the nature and extent of the industry within the region, there is no chemical industry or producers of halogens or SF₆ in the area. In terms of this sector, level 1 methods were used to estimate 100% of the emissions from mineral products, 83% of metal production and 100% of the emissions from the consumption of halocarbons and SF₆.
Agriculture

Agricultural emissions include CH\(_4\) and N\(_2\)O, they are primarily associated with farmed animals and the use of organic and inorganic fertilizers. There are additional emissions associated with the combustion of agricultural produce on fields.

The inventory shows that 358 CO\(_2\)e were emitted from the agricultural sector within the region in 2005. Madrid Chart 3 shows that this is comprised of 35% from enteric fermentation, 7% from manure management and 58% from agricultural soils.

These emissions have been estimated using level 1 approaches for 100% of the emissions from enteric fermentation and manure management and 0% of agricultural soil emissions.

Waste

Waste emissions include CO\(_2\), CH\(_4\) and, N\(_2\)O. The emissions are mostly associated with the degradation of putrescible waste deposited to landfill sites, the amount of wastewater, whether it is domestic or industrial, and with the incineration of waste. The levels of emissions are reflected by the amount of waste that is deposited to landfill sites, the management of the site, the amount of waste that is recycled and the amount of waste that is incinerated without the production of electricity.

The inventory shows that 2,147 kt CO\(_2\)e were emitted from the waste sector in 2005. Madrid Chart 4 shows the total is comprised of 73% from managed waste disposal, 23% waste water and 4% from incineration.

The reasons for these emissions are due to the regions propensity to landfill its waste rather than to recycle or incinerate it. The emissions have been estimated using level 1 methods for 100% of the emissions from managed waste disposal, 100% of waste water and 100% of emissions from incineration.
The emissions for the whole of the Madrid Region are displayed in Madrid Chart 5 above, the inset shows the percentage of GRIP levels that have been used to estimate the emissions. These emissions represent the sum of the emissions presented on the previous two pages. The emissions for Spain are displayed in Madrid Chart 6 above. This shows the relative difference in the emissions in the region to that displayed nationally. The region has a higher share of energy and waste emissions to that displayed nationally, a lower share of Industrial process and Agricultural emissions. The emissions per-capita of the region are 6.9tCO$_2$e compared to 10tCO$_2$e in Spain. This difference can be explained by the relatively higher share of the service sector within the region to that nationally. Regions with a similar per-capita emissions include Helsinki and Brussels. The emissions per-capita are below the average of the regions and are also below the European average. They are similar in size to the emissions per capita of Sweden. The data has been largely compiled using measured data sets and are therefore reliant on the accuracy of those data sets. The carbon intensity of electricity generation is also lower in Spain to that of other countries.

The table below displays the emissions for the whole of the Madrid Region on a sector-by-sector basis and the main sub-sectors of the energy sector. The results are displayed in terms of each of the six Kyoto greenhouse gases. The table shows the relative contributions that each gas makes from each source, with the CO$_2$e amount displayed also. This table clearly shows that CO$_2$ emissions from the energy sector dominate the emissions from this region. These account for 96% of CO$_2$ emissions and 87% of CO$_2$e emissions. The dominance of CO$_2$ emissions from the energy sector is a common feature to all the emissions inventories presented in this brochure. It is this data and the activity data underpinning it that drives the GRIP Scenario Tool, which is the platform of the GRIP Scenario process. It is this process that enables regions to form scenarios of how they can reduce their energy emissions within their region. This can then be used to form preferred strategies on how the region may develop. These are the next step of the EU CO$_2$ project, and are explained in more detail at the end of this document.

The table below and Madrid Chart 5 above show that the energy sector is responsible for 89% emissions, Industrial Processes for 5%, Waste for 5% and Agriculture 1% of emissions. This shows the clear need to focus on the energy system needed for Madrid to be a low-carbon region of the future.

![Madrid Chart 5: Left: Total regional emissions by sector (CO$_2$e); Right: GRIP level used (CO$_2$e)](image1)

![Madrid Chart 6: Total national emissions by sector (CO$_2$e)](image2)

<table>
<thead>
<tr>
<th>Sector</th>
<th>kt CO$_2$</th>
<th>kt CH$_4$</th>
<th>kt N$_2$O</th>
<th>kt HFC</th>
<th>kt PFC</th>
<th>kt SF$_6$</th>
<th>kt CO$_2$e - GWP100</th>
<th>GRIP % Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy - Total</td>
<td>35736.71</td>
<td>3.99</td>
<td>1.37</td>
<td></td>
<td></td>
<td></td>
<td>36245.28</td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>8706.53</td>
<td>0.52</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td>8766.46</td>
<td></td>
</tr>
<tr>
<td>Services</td>
<td>6605.24</td>
<td>0.27</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td>6651.16</td>
<td></td>
</tr>
<tr>
<td>Industry</td>
<td>8727.26</td>
<td>0.41</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td>8794.23</td>
<td></td>
</tr>
<tr>
<td>Energy Industry</td>
<td>45.11</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td>45.39</td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>9898.18</td>
<td>0.87</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
<td>10183.08</td>
<td></td>
</tr>
<tr>
<td>Fugitive</td>
<td>1754.39</td>
<td>1.93</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td>1804.96</td>
<td></td>
</tr>
<tr>
<td>Industrial Processes</td>
<td>1580.76</td>
<td>0.76</td>
<td>0.00</td>
<td>584.83</td>
<td>13.69</td>
<td>0.00</td>
<td>2227.55</td>
<td></td>
</tr>
<tr>
<td>Waste</td>
<td>0.09</td>
<td>94.13</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td>2147.32</td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>7.33</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>358.28</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>37317.56</td>
<td>106.21</td>
<td>2.58</td>
<td>584.83</td>
<td>13.69</td>
<td>0.00</td>
<td>40978.43</td>
<td></td>
</tr>
</tbody>
</table>
The province of Naples is one of the five provinces of Campania Region with 3,086,622 inhabitants and a surface of 1,171 km²: it is one of the most populated in Italy, with its 2,635 inhabitants per km². The climate is typically Mediterranean except for the few inner zones where it is more continental. The territory is essentially flat with the exception of mountainous part like Peninsula Sorrentina, Vesuvio and Monte Partenio.

The plain is characterized by two relevant volcanic areas, Vesuvio and Campi Flegrei; between them is concentrated the most densely populated center, where the city of Portici reaches 16,000 inhabitants per sq km, one of the highest on the planet. The province is divided in 92 municipalities, the biggest one is Naples, with more than 1,000,000 people and a high concentration of functions and services.

The population represents about 53.4% of the Region Campania while the surface is only 9% of the total area; it isn’t growing since last years but has a young population growth. The employment rate in 2004 is 42.8% while the unemployment rate is 18.9%. There are 264,946 companies present on the territory most of them (54%) little-sized enterprises.

The coastal level grounds and a favourable climate represent the chief factors in the agricultural sector, characterized by vegetables, fruit-trees, citrus fruits, olive-trees and vine. There are 51,000 agricultural enterprises whose production is worth over euro 500 million.

There are 30,398,000 crafts enterprises specialised in clothing and shoes (2,109); food products (2,877); furniture and wood objects (2,490); antique traditions of artistic handicraft (530).

There is a strong specialization in commercial brokerage for many product sectors. Mechanical and electromechanical sectors as well as the transport sector, are particularly important in the industry, as well as fashion with 7,600 enterprises of clothing, leather and shoes.

The natural resources as well as climate, culture, traditions and accommodation provide Naples and its surroundings with great touristic appeal: the islands of Capri, Procida and Ischia, the Sorrentine Peninsula, Vesuvius, the archaeological areas of Pompei and Herculaeum are very famous all over the world representing the fulcrum of the local economy with a large supply of accommodation.

Foreign trade involves about 2,500 enterprises that export goods for €4,213,000 and import goods for €4,457,000. The existing transportation network is strongly influenced by the main town Naples, that is well connected with the whole territory, as the centre of a radial system. The railways network is at moment in a big transformation: new railways lines are in work such as high speed railways line.

The main rule of Naples City and a lot of areas characterized exclusively by residential or commercial functions influence the present road network structure that assures good connection inside the whole territory but with heavy problems in terms of traffic and pollution. Good connections with the exterior and the main hubs are also guaranteed by a good highway network.

In the port of Naples more than 20,8 million tons of goods are loaded and inloaded. Tourist traffic amounts to more than 9 million passengers and 370 enterprises offer different services such as naval reparations, port warehouses, furnishing and provisioning services, container services. It is destined to be qualified as an ever more important logistic platform in the Mediterranean. The berthing of cruise ships has increased by 7.2% over 2004 and tourists numbered 830,158. The international airport of Naples-Capodichino, the most important of the South of Italy with its 130 flights on a daily basis, is easily accessible and well-connected: it is the principal gateway for more than 4,500,000 passengers.

There are many universities and research activities, concerning the sectors of new materials, biotechnology, super-conductivity, and aero-space: 5 universities, 16 research Consortium, 22 institutes and 8 research centres of the National Research Council.
The previous page contains an overview of the Napoli Region. This background offers a useful insight into the size and sources of GhG emissions that we expect to see in the region. The overview tells us that Napoli has a higher proportion of the population employed in the agricultural sector and a lower proportion of people employed in the industrial sector compared to the Italian average. Campania also has a high level of employment in the public sector and is the most densely populated areas in Italy. The energy that it consumes is mostly fossil based.

The inventory for the Napoli Region is presented below. This is displayed by sector: firstly the emissions from the combustion, distribution, transformation and extraction of energy (Napoli Chart 1); secondly in terms of emissions from industrial processes (Napoli Chart 2); thirdly in terms of the emissions from agriculture (Napoli Chart 3) and lastly in terms of the emissions from waste (Napoli Chart 4). We then present total GhG emissions from the region and also the national emissions breakdown (Charts 5 and 6).

Emissions from the Energy Sector

Greenhouse gas emissions from the combustion, distribution, transformation and extraction of energy are of three types: carbon dioxide (CO$_2$), methane (CH$_4$) and nitrous oxide (N$_2$O). The levels of emissions vary depending on the manner in which energy is combusted/distributed/transformed/extracted, as well as the type of energy source (gas, solid, liquid, electricity etc).

The size of the emissions released from a region is determined by the type of energy consumed / combusted and their associated emissions, all considered in terms of the GRIP level used to estimate them.

In GRIP there are three different methodological levels associated with each emissions source, depending on the data available to carry out the emissions calculations. The use of GRIP level 1 methodology requires information collected locally on, in this case, energy consumption by type from different sectors, and is the level with which the highest confidence can be attached to the emissions reported. The insert in Napoli Chart 1 shows the GRIP levels used to estimate the emissions from each sub sector as a percentage of that sector’s emission. This insert shows that level 1 methods were used to estimate 95% of the emissions from the residential sector, 74% of the service sector, 64% of the industrial sector’s emissions, 100% of the transport sector and 97% of fugitive emissions. This means that a large part of the data entered by the team in Napoli was sourced from locally measured data sets. There is potential for improvement in future emissions inventories. However, by establishing and maintaining the demand for this data, future emissions inventories like this one will be made possible. This will encourage organizations that hold it to collate and provide it enabling year-on-year energy based emissions to be compiled for the Napoli area in future years.

Industrial Processes

Industrial process emissions include the GhG emissions that are released from non-combustion chemical reactions at certain industrial sites, in addition they include emissions that are released during the maintenance of certain products such as air conditioning units. This is the only sector in a GhG emissions inventory that includes all six Kyoto GhGs.

In the case of this region the emissions are 874 kt CO$_2$e. This is presented in Napoli Chart 2, and is comprised of 60% from mineral products, 6% from chemical industry, 1% from metal production, 0.01% from the production of halocarbons and SF$_6$, and 33% from the consumption of halocarbons and SF$_6$. This sector is usually a reflection of the nature and extent of the industry within the region. The data suggests that Napoli has a range of industrial sites that are responsible for these emissions. In terms of this sector, level 1 methods were used to estimate 0% of the emissions from mineral products, from the chemical industry, from metal production and from the production of halocarbons and SF$_6$, and 100% of the emissions from the consumption of halocarbons and SF$_6$.

The industrial sites responsible for these emissions are nearly always subject to monitoring requirements and it requires a relationship to be set-up with the regulatory body that monitors the large industrial units in the region. This has not yet been done in Napoli. This relationship can be built to enable future versions of the emissions inventory to be populated with more level 1 data. Estimating emissions using level 2 and 3 approaches in this sector carry the greatest degree of uncertainty.
Agriculture

Agricultural emissions include CH\(_4\) and N\(_2\)O, they are primarily associated with farm yard animals and the use of organic and inorganic fertilizers. There are additional emissions associated with the combustion of agricultural produce on fields.

The inventory shows that 490 ktCO\(_2\)e were emitted from the agricultural sector within the region in 2005. This is comprised of 24% from enteric fermentation, 5% from manure management, 71% from agricultural soils and, 0.06% from other sources. These emissions have been estimated using level 1 approaches for 27% of the emissions from enteric fermentation, 18% of emissions from manure management, 0% of agricultural soil emissions and 100% from other sources’ emissions.

Waste

Waste emissions include CO\(_2\), CH\(_4\), and, N\(_2\)O. The emissions are mostly associated with the degradation of putrescible waste deposited to landfill sites, the amount of wastewater, whether it is domestic or industrial and the incineration of waste. The levels of emissions are reflected by the amount of waste that is deposited to landfill sites, the management of the site, the amount that is recycled and the amount of waste that is incinerated without the production of electricity.

The inventory shows that 458 kt CO\(_2\)e were emitted from the waste sector in 2005. In the case of the region this was comprised of 19% from managed waste disposal, 29% from unmanaged waste disposal, 39% from waste water and 14% from incineration.

The reasons for these emissions are due to the region's propensity to landfill its waste rather than to recycle or incinerate it. The emissions have been estimated using level 1 methods for 100% of the emissions from managed waste disposal, 100% of unmanaged waste disposal, 100% of waste water emissions and 99% of the emissions from incineration.
THE emissions for the whole of the Napoli Region are displayed in Napoli Chart 5 above, the inset shows the percentage of GRIP levels that have been used to estimate the emissions. These emissions represent the sum of the emissions presented on the previous two pages. The emissions for Italy are displayed in Napoli Chart 6 above. This shows the relative difference in the emissions in the region to that displayed nationally. The region has a relatively similar share of emissions to that displayed in Italy. The emissions per-capita of the region are 4.05tCO$_2$e compared to 9.9tCO$_2$e in Italy. This difference may be explained by the comparatively low levels of employment in the region. Regions with a similar per-capita emissions include Stockholm and Oslo. The emissions per-capita are below the average of the regions and are also below the European average. They are below the emissions per capita of all the participating countries in this project. The data has been largely compiled using measured data sets and is therefore largely reliant on the accuracy of those data sets.

The table below displays the emissions for the whole of the Napoli Region on a sector-by-sector basis and the main sub-sectors of the energy sector. The results are displayed in terms of each of the six Kyoto greenhouse gases. The table shows the relative contributions that each gas makes from each source, with the CO$_2$e amount displayed also. This table clearly shows that CO$_2$ emissions from the energy sector dominate the emissions from this region. These account for 95% of CO$_2$ emissions and 83% of CO$_2$e emissions. The dominance of CO$_2$ emissions from the energy sector is a common feature to all the emissions inventories presented in this brochure. It is this data and the activity data underpinning it that drives the GRIP Scenario Tool, which is the platform of the GRIP Scenario process. It is this process that enables regions to form scenarios of how they can reduce their energy emissions within their region. This can then be used to form preferred strategies on how the region may develop. These are the next steps of the EU CO$_2$ project, and are explained in more detail at the end of this document.

The table below and Napoli Chart 5 above show that the energy sector is responsible for 85% emissions, Industrial Processes for 7%, Waste for 4% and Agriculture 4% of emissions. This shows the clear need to focus on the energy system needed for Napoli to be an even lower-carbon region of the future.

<table>
<thead>
<tr>
<th>Sector</th>
<th>CO$_2$ (kt)</th>
<th>CH$_4$ (kt)</th>
<th>N$_2$O (kt)</th>
<th>CO$_2$e - GWP100 (kt)</th>
<th>HFC (kt)</th>
<th>PFC (kt)</th>
<th>SF$_6$ (kt)</th>
<th>CO$_2$e - GWP100 (kt)</th>
<th>GRIP % Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy - Total</td>
<td>10376.17</td>
<td>4.78</td>
<td>0.61</td>
<td>10664.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>3157.94</td>
<td>0.65</td>
<td>0.07</td>
<td>3193.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Services</td>
<td>1493.39</td>
<td>0.18</td>
<td>0.05</td>
<td>1512.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry</td>
<td>1510.42</td>
<td>0.06</td>
<td>0.09</td>
<td>1539.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Industry</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>3995.07</td>
<td>0.85</td>
<td>0.39</td>
<td>4134.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fugitive</td>
<td>219.35</td>
<td>3.04</td>
<td>0.00</td>
<td>283.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Processes</td>
<td>539.99</td>
<td>0.00</td>
<td>0.13</td>
<td>277.16</td>
<td>0.00</td>
<td>0.00</td>
<td>874.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste</td>
<td>19.53</td>
<td>14.17</td>
<td>0.46</td>
<td>458.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>6.80</td>
<td>1.12</td>
<td></td>
<td>490.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>10935.68</td>
<td>25.75</td>
<td>2.32</td>
<td>277.16</td>
<td>0.00</td>
<td>0.00</td>
<td>12487.72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>